
1

Lecture 6 Lecture 6
Transaction Level Modeling in Transaction Level Modeling in SystemCSystemC

Multimedia Architecture and Processing Laboratory
多媒體架構與處理實驗室

Prof. Wen-Hsiao Peng (彭文孝)
pawn@mail.si2lab.org

2007 Spring Term

2

AcknowledgementsAcknowledgements

This lecture note is partly contributed by Prof. Gwo Giun Lee (李國
君) in the Dept. of EE, National Cheng-Kung University and his
team members 王明俊, 林和源 in the research laboratory 多媒體系
統晶片實驗室

E-mail: clee@mail.ncku.edu.tw
Tel: +886-6-275-7575 ext. 62448
Web: http://140.116.216.53

3

ReferenceReference

T. Grotker, S. Liao, G. Martin, S. Swan, “System Design with
SystemC”, Kluwer Academic, 2004 (ISBN: 1-4020-7072-1)

4

Transaction Level ModelingTransaction Level Modeling
A high-level approach to model digital systems

Care more on what data are transferred to and from what locations

Care less on the actual protocol used for data transfer

Features
Details of communication are separated from details of computation

Communication mechanisms are modeled as channels

Low-level details of information exchanged are hidden in channels

Pin level details at the structural boundary are abstracted into interface

Transaction requests take place by calling interface functions

Synchronization details of channels are typically abstracted into blocking
and/or non-blocking I/O

Advantages
Enable high simulation speed by hiding uninteresting details

5

Timed TLMTimed TLM –– The Very Simple Bus The Very Simple Bus

6

The Very Simple BusThe Very Simple Bus

Although this example is very simple and may not be practical, it
provides us an essential concept about TLM in SystemC

Some behaviors of the real bus such as arbitration, split
transactions, and memory wait states are not considered

Memory is modeled as a memory array within the bus rather than
a memory module external to the bus

Contention, arbitration, interrupts, and cycle-accuracy can be
modeled with TLM without resorting to pin-accuracy

very_simple_bus_if

7

Implementation of The Very Simple BusImplementation of The Very Simple Bus

class very_simple_bus:
public very_simple_bus_if,
public sc_channel
{
public:

very_simple_bus (sc_name nm,
unsigned mem_size,
sc_time cycle_time)

: sc_channel(nm), _cycle_time(cycle_time)
{
//we model bus memory access using an
//embedded memory array
_mem = new char [mun_size];
//set initail value of memory to zero
memset(_mem, 0, mem_size_);

}
~very_simple_bus() { delet [] _mem;}

virture void burst_read (char *data, unsigned adder, unsigned length)
{
//model bus contention using mutex, but no arbitration rules
_bus_mux.lock();
// block the caller for length of burst transaction
Wait (length * _cycle_time);
// copy the data form memory of burst transaction
memcpy(data, _mem +addr, length);
// unlock the mutex to allow others access to the bus
_bus_mutex.unlock();

}
virture void burst_write (char *data, unsigned adder, unsigned length)
{

_bus_mutex.lock();
wait (length * _cycle_time);
// copy the data form requestor to memory
memcpy(_mem+addr, data, length);
_bus_mutex.unlock();

}
protected:
char* _mem;
sc_time _cycle_time;
sc_mutex _bus_mutex;

};

class very_simple_bus_if : virture public
sc_interface
{
public:

virtual void burst_write (char *data,
unsigned adder, unsigned length)=0;

virtual void burst_read (char *data,
unsigned adder, unsigned length)=0;

};

Cycle-count
accurate

model

8

Suppression ofSuppression of Uninteresting DetailsUninteresting Details

Burst transfer may take many cycles to complete

The bus is merely doing routine works

Clients that have pending bus requests are just waiting

No need to devote
simulation time for
uninteresting details

9

Timed TLM Timed TLM –– The Simple Bus DesignThe Simple Bus Design

10

Simple Bus DesignSimple Bus Design

clock

Master1 Master2 Master3

Slave1 Slave2

Arbiter

port

interface

Bus

Blocking
Master Interface

Non-blocking
Master Interface

Direct Master
Interface

Arbiter
Interface

Slave
Interface

class simple_bus
: public simple_bus_direct_if
, public simple_bus_non_blocking_if
, public simple_bus_blocking_if
, public sc_module

{
public: // ports

sc_in_clk clock;
sc_port<simple_bus_arbiter_if> arbiter_port;
sc_port<simple_bus_slave_if, 0> slave_port;

};

Arbiter
Port

Slave
Port

Hierarchical Channel

11

Simple Bus Design (c. 1)Simple Bus Design (c. 1)

Thread

Method

clock

Master1 Master2 Master3

Slave1 Slave2

Arbiter

port

interface

Bus

Thread Thread

Method

12

Structure of the Simple Bus DesignStructure of the Simple Bus Design
Masters (CPUs, DSPs, Arithmetic Intensive ASIC)

Initiate transactions on the bus

Bus
Allow the masters and slaves to communicate using bus transactions

Slaves (ROMs, RAMs, I/O Devices, Hardware Accelerators)
Response to the bus requests

Arbiter
Arbitrate which master can issue the transaction via the bus
Select a request to execute from the competing bus requests
When a master is granted access to the bus, the requests from the
other masters are queued by the bus and executed in later cycles

Clock generator
Provide the system clock that can synchronize the blocks

13

Structure of the Simple Bus Design (c. 1)Structure of the Simple Bus Design (c. 1)

Master 1: Blocking Master
Use blocking master interface

Model high-level software that initiates transactions as they execute

Master 2: Non-Blocking Master
Use non-blocking master interface

Model detailed processor (instruction-set simulator, ISS) that must
execute on every clock edge even when waiting for its bus
transactions to complete

Model Master 3: Direct Master
Use direct master interface

Print debug information about the contents of the memories

Does not represent a block that will exist in the real world

14

Structure of the Simple Bus Design (c. 2)Structure of the Simple Bus Design (c. 2)

Slave 1 (Fast Memory)
Implement slave interface

Model a random access memory that supports single-cycle read/write
operation with no wait states and no clock port

React immediately to the bus request and set the status

Slave 2 (Slow Memory)
Implement slave interface

Model a random access memory which takes a few number of cycles
to complete a read/write operation, and contains a clock port

Wait states
Additional cycles that a slave takes to complete an operation

All other activity on the bus waits until the operation completes

15

Features of the Simple Bus DesignFeatures of the Simple Bus Design
High performance, cycle-accurate, platform transaction-level model
Cycle-accurate transaction level modeling

Model is done at transaction level
Model is based on cycle-based synchronization

Cycle-based synchronization
Model the data movement on a clock by clock basis
Sub-cycle events are of no interest

Transaction-based modeling
Communication between components are described as function calls
Sequences of events on a group of wires are denoted by a set of function
calls in an abstract interface

Two-phase synchronization
Modules attached to the bus execute on the rising clock edge
The bus executes on a falling clock edge

16

Features of the Simple Bus Design (c. 1)Features of the Simple Bus Design (c. 1)

Easy to add different kinds and numbers of masters or slaves
Masters connect to the bus using just one port connection

Slaves connect to the bus using SystemC multi-port feature

Easy to change the arbitration policy by replacing the arbiter
Arbiter is a separate module from the bus

17

Ideas behind the Simple Bus ModelIdeas behind the Simple Bus Model
Modeling efforts

Relatively easy to develop, understand, use, and extend

Capable of being constructed very early in the system design

Enable designers to explore implementation alternatives

Make design trade-offs before it is too late or too expensive to do so

Accuracy
Being fully cycle-accurate

Being able to accurately simulate with both the SW and HW components

Fast and accurate enough to validate SW before more detailed HW models
or implementations are available

Speed
Capable of simulate at the speed of more than 0.1MHz

Fast enough to allow meaningful amounts of SW to be executed along with
HW models

18

Master InterfaceMaster Interface

19

Master InterfaceMaster Interface
Describe the communication between the master and the bus

Master interface is used by masters and implemented in the bus

3 sets of master interface functions
Blocking master interface

Non-blocking master interface

Direct master interface

Multiple masters can be connected to a bus
Each master is independent of the others

Each master can issue a bus request at any time

Each master is identified by a priority number
The lower the priority is, the more important the master is

Each master interface function use this priority to set the importance of the call

A master can reserve the bus for a subsequent access
The bus can be locked for the same master in consecutive cycles

20

Blocking Master InterfaceBlocking Master Interface

These methods return only after the transaction is completed

Used by high-level software that generate read/write transactions
Such software model is not cross-compiled to a target processor and
executes directly on the host workstation

class simple_bus_blocking_if : public virtual sc_interface
{
public: // blocking BUS interface
virtual simple_bus_status burst_read(unsigned int unique_priority

, int *data
, unsigned int start_address
, unsigned int length = 1
, bool lock = false) = 0;

virtual simple_bus_status burst_write(unsigned int unique_priority
, int *data
, unsigned int start_address
, unsigned int length = 1
, bool lock = false) = 0;

}; // end class simple_bus_blocking_if

(1)The id of the master
(2)The importance of the master

If lock is set,
(1) The bus is reserved for

exclusive use for a next
request of the same master

(2) The function cannot be
interrupted by a request
with a higher priority

21

Return Values of Master Interface MethodsReturn Values of Master Interface Methods

SIMPLE_BUS_REQUEST
The request is issued and placed in the queue

The status in all cases right after issuing the request

The status only changes when the bus processes the request

SIMPLE_BUS_WAIT
The request is being served but not completed yet

SIMPLE_BUS_OK
The request is completed without errors

SIMPLE_BUS_ERROR
The request is finished but the transfer is not complete successfully

22

NonNon--Blocking Master InterfaceBlocking Master Interface

These functions return immediately, but the read/write will take
more than one cycle when competing requests exist

Caller must check the status of the last request using get_status()

Used by ISS models which cannot be suspended while they have
outstanding bus requests

class simple_bus_non_blocking_if : public virtual sc_interface{

public: // non-blocking BUS interface
virtual void read (unsigned int unique_priority

, int *data
, unsigned int address
, bool lock = false) = 0;

virtual void write (unsigned int unique_priority
, int *data
, unsigned int address
, bool lock = false) = 0;

virtual simple_bus_status get_status (unsigned int unique_priority) = 0;

}; // end class simple_bus_non_blocking_if

23

NonNon--Blocking Master Interface (c. 2)Blocking Master Interface (c. 2)

A non-blocking request can be made if the status of the last
request is either SIMPLE_BUS_OK or SIMPLE_BUS_ERROR

An error message is produced and the execution is aborted when
a new request is issued and the current one is not completed yet

24

Direct Master InterfaceDirect Master Interface

These functions provide instantaneous read/write
Simulated time will not advance and scheduler will not intervene

Data accesses go through the bus for proper routing of the requests

Data transfer is done without using bus protocol

Used for creating simulation monitors
Enable debuggers running on top of ISS models to read/write to
slaves without waiting for the simulation time to advance

class simple_bus_direct_if : public virtual sc_interface
{

public:
// direct BUS/Slave interface
virtual bool direct_read(int *data, unsigned int address) = 0;
virtual bool direct_write(int *data, unsigned int address) = 0;

}; // end class simple_bus_direct_if

25

Slave and Arbiter InterfacesSlave and Arbiter Interfaces

26

Slave InterfaceSlave Interface

Describe the communication between the bus and the slave
Slave interface is used by the bus and implemented by every slave

By definition, the slaves thus play the role of channels

2 sets of slave interface functions
Normal slave interface

Serve the default read/write to and from the slaves

Direct slave interface
Similar to direct master interface

Multiple slaves can be connected to a bus
Two functions can be used to obtain the memory range of a slave

unsigned int start_address() const;

unsigned int end_address() const;

27

Normal Slave InterfaceNormal Slave Interface

The read/write function performs a single data transfer and
returns immediately, and caller must check the return values

Return values of slave interface methods
SIMPLE_BUS_WAIT: the slave issues a wait state

SIMPLE_BUS_OK: the transfer was successful

SIMPLE_BUS_ERROR: an error occurs during the transfer

If the return status is SIMPLE_BUS_WAIT, caller must call the
function again until the status becomes SIMPLE_BUS_OK

class simple_bus_slave_if : public simple_bus_direct_if
{
public: // Slave interface

virtual simple_bus_status read(int *data, unsigned int address) = 0;
virtual simple_bus_status write(int *data, unsigned int address) = 0;
virtual unsigned int start_address() const = 0;
virtual unsigned int end_address() const = 0;

}; // end class simple_bus_slave_if Transfer a single data item
to or from the slave

Map requests to the
appropriate slave

28

Arbiter InterfaceArbiter Interface

Describe the communication between the bus and the arbiter
Arbiter interface is used by the bus and implemented in the arbiter

By definition, the arbiter thus plays the role of channel

Arbitrate competing requests issued by different masters
The bus passes its outstanding requests to an arbiter on each cycle

One of the requests is selected for execution based on arbitration
policy while the others are kept in the SIMPLE_BUS_REQUEST state

class simple_bus_arbiter_if : public virtual sc_interface{

public:
virtual simple_bus_request* arbitrate(const simple_bus_request_vec &requests) = 0;

}; // end class simple_bus_arbiter_if

Outstanding requests are passed
to the arbiter as a vector

29

Master and Slave Request StatusMaster and Slave Request Status
Master request status (read by the master)

SIMPLE_BUS_REQUEST
The request is issued and placed in the queue

SIMPLE_BUS_WAIT
The request is being served but not completed yet

SIMPLE_BUS_OK
The request is completed without errors

SIMPLE_BUS_ERROR
The request is finished but the transfer is not complete successfully

Slave request status (read by the bus)
SIMPLE_BUS_WAIT

The slave issues a wait state
SIMPLE_BUS_OK

The transfer was successful
SIMPLE_BUS_ERROR

An error occurs during the transfer

30

Concepts of OperationsConcepts of Operations

31

Overall Execution SchemeOverall Execution Scheme

On the rising edge of the clock
Masters execute and may send requests to the bus

Bus maintains a set of outstanding requests including unfinished
ones from past cycles

On the falling edge of the clock
Bus calls arbiter to select a request for execution

Bus looks up the address of the request to determine the target slave

Bus invokes the read()/write() functions of the target slave

Functions return and indicate if the slave issues wait states
Bus will reissue the request on the next cycle upon receiving wait states

Bus updates the status of the original master once the slave
completes the request

32

Overall Execution Scheme (c. 1) Overall Execution Scheme (c. 1) –– Positive EdgePositive Edge

clock

Master1 Master2 Master3

Slave1 Slave2

Arbiter

port

interface

Bus

Masters issue
bus requests

33

Overall Execution Scheme (c. 2) Overall Execution Scheme (c. 2) –– Negative EdgeNegative Edge

clock

Master1 Master2 Master3

Slave1 Slave2

Arbiter

port

interface

Bus

The arbiter is
called and a

master request
is selected

34

Overall Execution Scheme (c. 3) Overall Execution Scheme (c. 3) –– Negative EdgeNegative Edge

clock

Master1 Master2 Master3

Slave1 Slave2
port

interface

Bus Arbiter

The slave
read()/write()

method returns
immediately

35

Overall Execution Scheme (c. 4) Overall Execution Scheme (c. 4) –– Negative EdgeNegative Edge

clock

Master1 Master2 Master3

Slave1 Slave2
port

interface

Bus

The bus updates
the status of the
original maser

request

Arbiter

36

TwoTwo--Phase SynchronizationPhase Synchronization
Masters and slaves are active on the rising edge of the clock

Bus and arbiters are active on the falling edge of the clock

Two-phase synchronization
Communication between modules attached to the bus go through the bus

Communication is delayed by a clock cycle

On the rising edge of the clock, no state changes of the bus are visible

On the falling edge of the clock, the bus arbitrates the competing requests

Request-update mechanism
Communications between processes go through the primitive channels

Communication is delayed by a delta-cycle

In the evaluation phase, no state changes of primitive channels are visible

In the update phase, primitive channels resolve competing requests

37

TwoTwo--Phase Synchronization (c. 1)Phase Synchronization (c. 1)

Triggering the bus using the clock falling edge is just a technique

Actual implementation may not use the falling edge of the clock

Designs with the two-phase synchronization and deterministic
arbitration rules are deterministic

The order of process execution will not affect the execution results

38

Implementation of MastersImplementation of Masters

39

Blocking MasterBlocking Master

Issue requests at the
positive edge of clock

Blocking burst read

Blocking burst write

Wait for “mylength” cycles

40

NonNon--blocking Masterblocking Master

Non-blocking read

Status polling

Non-blocking write

Status polling

41

Direct MasterDirect Master

Thread process with no
static sensitivity

42

Implementation of BusImplementation of Bus

43

Bus ImplementationBus Implementation

typedef sc_pvector<simple_bus_request *>
\ simple_bus_request_vec;

Handle requests at the
negative edge of clock

Request collection and arbitration

Request execution

Requests queued in the bus

Request granted for execution

44

Request CollectionRequest Collection

Pass bus requests
as a vector to arbiter
and return the request
to be executed

Collect bus
requests in
vector Q

45

Request Arbitration RulesRequest Arbitration Rules

If the request that was executed has its “lock” flag set, when the
master issue the requests to the bus

If the request was a burst request and it is not yet completed, it is
always selected

If the master that issued the request is issuing another request in the
current cycle, then the master’s request is always selected

46

Request ArbitrationRequest Arbitration
Highest Priority

Request that is being executed
and has been locked

Second Priority
Request that is set to lock

at previous call

Third Priority
Request of lower priority

number

47

Request ExecutionRequest Execution

Perform atomic slave read/write

Event notify

Event notify

Clear request

Clear request

Clear request

Routing of the requests

Update master request

Master request status

48

Implementation of Blocking InterfaceImplementation of Blocking Interface

Wait for the transaction to complete

49

Implementation of NonImplementation of Non--blocking, Direct Interfacesblocking, Direct Interfaces

No Wait Statements

Non-blocking Read

Direct Read

50

Implementation of SlavesImplementation of Slaves

51

Slave 1: Fast MemorySlave 1: Fast Memory

52

Slave 2: Slow MemorySlave 2: Slow Memory

Method process

Do nothing without
read/write request

Initiate the counters of wait states.
Bus will keep invoking the same

function until the return is
SIMPLE_BUS_OK.

Works to be done are minimized in
the frequently activated method process

53

HighHigh--Performance Modeling TechniquesPerformance Modeling Techniques

54

HighHigh--Performance Modeling TechniquesPerformance Modeling Techniques

Simple modules are modeled without any processes at all
Example: fast_mem and arbiter

Blocks to be activated most frequently should use SC_METHOD
SC_METHOD consumes less memory and execute more quickly

Frequently activated processes should do as little work as possible
Example: in slow_mem, there is a clocked SC_METHOD that simply
decrements a counter to indicate when the wait states comes to
completion

55

Comparisons between TLM and RTLComparisons between TLM and RTL
RTL uses signals for communication; TLM employs transactions

Transactions are modeled by function calls

Both control and data are transferred along with function calls
There is no pin-accuracy

Data can be bundled and passed more efficiently

Pointers to data are transferred between modules by transaction
Enable one module to very efficiently copy blocks of data to another

Example: the burst_read/burst_write transactions

RTL uses low-level bit vectors; TLM uses high level C data-types

RTL uses static sensitivity; TLM uses dynamic sensitivity
RTL modules execute on every cycle even if no work is being done

TLM modules enable execution when they have real work to perform
Processes are suspended until the bus requests complete

56

Common QuestionsCommon Questions

What is the distinction between modules and hierarchical channels?
In an informal way

Hierarchical channels: implement interface functions and contain no ports

Modules: do not implement interface functions and contain ports

In reality
Hierarchical channels and modules are the same thing

In simple_bus design
Blocks implementing transactions are designed to be channels that
inherit form their transaction interface

Blocks that initiate transactions are designed to be modules that
allow them to access the channels

The bus implements several interface functions and it also has ports
to access the interface of the slaves and arbiter

57

Common Questions (c. 1)Common Questions (c. 1)

Why do slaves implement slave interface rather than having
normal ports like other modules?

Eliminate the need for a process within the fast_mem and arbiter

Allow minimizing the amount of works in the process of slow_mem

Why are multiple slave channels attached to the same port on the
bus?

Do not want to fix the number of slaves

Allow binding as many slaves to the bus as wished during elaboration

Multi-port feature of SystemC
sc_port<simple_bus_slave_if, 0> slave_port

slave_port.size() returns the number of channels bounded to the port

slave_port[N] separates slave channels bounded to the port

