Lecture 6
Transaction Level Modeling in SystemC

Multimedia Architecture and Processing Laboratory
U R

Prof. Wen-Hsiao Peng (/¥ F)
pawn@mail.si2lab.org

2007 Spring Term

1,
J




NI

Acknowledgements

This lecture note is partly contributed by Prof. Gwo Giun Lee (% [
=1) in the Dept. of EE, National Cheng-Kung University and his
team members = [F|{%, #4175 in the research laboratory 215 ¥ =
il O

E-mail: clee@mail.ncku.edu.tw

Tel: +886-6-275-7575 ext. 62448

Web: http://140.116.216.53

I




Reference

N

L/

¢ T. Grotker, S. Liao, G. Martin, S. Swan, “System Design with
SystemC’, Kluwer Academic, 2004 (ISBN: 1-4020-7072-1)




Transaction Level Modeling

N

%

¢ A high-level approach to model digital systems
s Care more on what data are transferred to and from what locations
s Care less on the actual protocol used for data transfer
¢ Features
s Details of communication are separated from details of computation
% Communication mechanisms are modeled as channels
s Low-level details of information exchanged are hidden in channels
¢ Pin level details at the structural boundary are abstracted into interface
+» Transaction requests take place by calling interface functions

* Synchronization details of channels are typically abstracted into blocking
and/or non-blocking 1/0

L (4

o0

¢ Advantages
s Enable high simulation speed by hiding uninteresting details




Timed TLM — The Very Simple Bus

AN




N

The Very Simple Bus

4 Although this example is very simple and may not be practical, it
provides us an essential concept about TLM in SystemC

4 Some behaviors of the real bus such as arbitration, split
transactions, and memory wait states are not considered

¢ Memory is modeled as a memory array within the bus rather than
a memory module external to the bus

4 Contention, arbitration, interrupts, and cycle-accuracy can be
modeled with TLM without resorting to pin-accuracy

clock ED ﬁ &D

Masterl MasterZ Master3

= port

il
very simple bus_if —‘ g } @3 &) interface

Bus + Me




Implementation of The Very Simple Bus

class very _simple_bus_if : virture public
sc_interface
{
public:
virtual void burst_write (char *data,
unsigned adder, unsigned length)=0;
virtual void burst_read (char *data,
unsigned adder, unsigned length)=0;

}

class very_simple_bus:
public very _simple_bus_if,
public sc_channel
{
public:
very_simple_bus ( sc_name nm,
unsigned mem_size,
sc_time cycle_time)
: sc_channel(nm), _cycle_time(cycle_time)
{
//we model bus memory access using an
//embedded memory array
_mem = new char [mun_size];
//set initail value of memory to zero
memset(_mem, 0, mem_size );
}

~very_simple_bus() { delet [] _mem;}

virture void burst_read (char *data, unsigned adder, unsigned length)
{
//model bus contention using mutex, but no arbitration rules
__bus_mux.lock();
/1 block the caller for length of burst transaction
Wait (length * _cycle_time);
/1 copy the data form memory of burst transaction
memcpy(data, _mem +addr, length);
// unlock the mutex to allow others access to the bus
__bus_mutex.unlock();

¥

virture void burst_write (char *data, unsigned adder, unsigned length)
{
__bus_mutex.lock();
wait (length * _cycle_time);
/1 copy the data form requestor to memory
memcpy(_mem-+addr, data, length);
_bus_mutex.unlock();

} Cycle-count
protected:

char* _mem; accurate
sc_time _cycle_time; mo d e |

sc_mutex _bus_mutex;

}




Suppression of Uninteresting Detalls

N

%

4 Burst transfer may take many cycles to complete

@ The bus is merely doing routine works

4 Clients that have pending bus requests are just waiting

RTL
Clock LML Iririririririri

Data > > O OO O o>

Addr R OETDETE S BTIDRTR < < < <arme> No need to devote
- — | simulation time for

~C

TLM kuninteresting details

Clock MMM rorirrrrriri
}‘7 wait 10 cycles 4’{

Data
Addr

bus_mutex.lock(); Transaction
executed by
memory copy




Timed TLM — The Simple Bus Design

AN




Simple Bus Design

class simple_bus
: public simple_bus_direct_if
, public simple_bus_non_blocking_if
, public simple_bus_blocking_if
, public sc_module

{ [ Hierarchical Channel }
public: // ports

C/ sc_in_clk clock;
sc_port<simple_bus_arbiter_if> arbiter_port;
Non-blocking " sc_port<simple_bus_slave_if, 0> slave_port;
Master Ilnterface ’
clock Direct Master
i Interface
A A
A 4 A 4 A 4
Masterl Master2 Master3
A A A
v v \ Arbiter

Master Interface

>
l

_0—0—0

Slave

Bus > Arbiter
4 |[Slave Arbiter
Port Port

Interface ?L

Slavel

\@

Sla}_vez

\ 4

4

port

A

&) interface

10




N

Simple Bus Design (c. 1)

%

clock

Thread

Thread

A Al

Masterl

A

A

Thread

o

Master?2

()

Master3

\ 4

A 4

C)

UO—

Bus

Method

)

A 4

Slavel

)
Slq_vez

Yl Method

g Arbiter /

1 port

&) interface

11




12

Structure of the Simple Bus Design

N

L
¢ Masters (CPUs, DSPs, Arithmetic Intensive ASIC)
¢ Initiate transactions on the bus

€ Bus
*» Allow the masters and slaves to communicate using bus transactions

4 Slaves (ROMs, RAMs, 1/0 Devices, Hardware Accelerators)
** Response to the bus requests

& Arbiter
«» Arbitrate which master can issue the transaction via the bus
¢ Select a request to execute from the competing bus requests

** When a master is granted access to the bus, the requests from the
other masters are queued by the bus and executed in later cycles

4 Clock generator
¢ Provide the system clock that can synchronize the blocks




N

Structure of the Simple Bus Design (c. 1)

%

4 Master 1: Blocking Master
¢ Use blocking master interface
** Model high-level software that initiates transactions as they execute

4 Master 2: Non-Blocking Master
* Use non-blocking master interface

* Model detailed processor (instruction-set simulator, ISS) that must
execute on every clock edge even when waiting for its bus
transactions to complete

4 Model Master 3: Direct Master
% Use direct master interface
¢ Print debug information about the contents of the memaories
*»+ Does not represent a block that will exist in the real world

13




14

Structure of the Simple Bus Design (c. 2)

N

%

4 Slave 1 (Fast Memory)
* Implement slave interface

*» Model a random access memory that supports single-cycle read/write
operation with no wait states and no clock port

¢ React immediately to the bus request and set the status
4 Slave 2 (Slow Memory)

“ Implement slave interface

*» Model a random access memory which takes a few number of cycles
to complete a read/write operation, and contains a clock port

¢ Wait states
+» Additional cycles that a slave takes to complete an operation
¢ All other activity on the bus waits until the operation completes




Features of the Simple Bus Design

N

L/

¢ High performance, cycle-accurate, platform transaction-level model
¢ Cycle-accurate transaction level modeling
¢ Model is done at transaction level
s Model is based on cycle-based synchronization
¢ Cycle-based synchronization
* Model the data movement on a clock by clock basis
% Sub-cycle events are of no interest
¢ Transaction-based modeling
s Communication between components are described as function calls

s Sequences of events on a group of wires are denoted by a set of function
calls in an abstract interface

¢ Two-phase synchronization
* Modules attached to the bus execute on the rising clock edge
s The bus executes on a falling clock edge

15




Features of the Simple Bus Design (c. 1)

N

L/

¢ Easy to add different kinds and numbers of masters or slaves
* Masters connect to the bus using just one port connection
¢ Slaves connect to the bus using SystemC mul/ti-port feature

4 Easy to change the arbitration policy by replacing the arbiter
¢ Arbiter is a separate module from the bus

16




N

ldeas behind the Simple Bus Model

%

¢ Modeling efforts
*» Relatively easy to develop, understand, use, and extend
+» Capable of being constructed very early in the system design
+» Enable designers to explore implementation alternatives
+ Make design trade-offs before it is too late or too expensive to do so

€ Accuracy
¢ Being fully cycle-accurate
¢ Being able to accurately simulate with both the SW and HW components

¢ Fast and accurate enough to validate SW before more detailed HW models
or implementations are available

¢ Speed
s Capable of simulate at the speed of more than 0.1MHz

¢ Fast enough to allow meaningful amounts of SW to be executed along with
HW models

17




Master Interface

AN

18




Master Interface

N

L/

¢ Describe the communication between the master and the bus
s Master interface is used by masters and implemented in the bus

¢ 3 sets of master interface functions
¢ Blocking master interface
* Non-blocking master interface
¢ Direct master interface

¢ Multiple masters can be connected to a bus
+ Each master is independent of the others
+ Each master can issue a bus request at any time
+ Each master is identified by a priority number
+ The lower the priority is, the more important the master is
+ Each master interface function use this priority to set the importance of the call

s A master can reserve the bus for a subsequent access
+ The bus can be locked for the same master in consecutive cycles

19




Blocking Master Interface

N

L/

class simple_bus_Dblocking_if : public virtual sc_interface

20

4 These methods return only after the transaction is completed

¢ Used by high-level software that generate read/write transactions

¢ Such software model is not cross-compiled to a target processor and
executes directly on the host workstation

p
(1) The id of the master

{
public: // blocking BUS interface /

virtual simple_bus_status burst_read(unsigned int unique_priority
, Int *data
, unsigned int start_address
, unsigned int length = 1

, bool lock = false) = 0; \

virtual simple_bus_status burst_write(unsigned int unique_priority
, Int *data
, unsigned int start_address
, unsigned int length = 1
, bool lock = false) = 0;

}; // end class simple_bus_blocking_if

(&

(2) The importance of the master

flf lock is set,
(1) The bus is reserved for
exclusive use for a next

(2) The function cannot be
interrupted by a request

K with a higher priority

~

request of the same master

/




N

Return Values of Master Interface Methods

%

¢ SIMPLE_BUS REQUEST

*» The request is issued and placed in the queue

*» The status in all cases right after issuing the request

*» The status only changes when the bus processes the request
¢ SIMPLE_BUS WAIT

** The request is being served but not completed yet

¢ SIMPLE_BUS OK
** The request is completed without errors

¢ SIMPLE_BUS ERROR
* The request is finished but the transfer is not complete successfully

21




22

Non-Blocking Master Interface

4 These functions return immediately, but the read/write will take
more than one cycle when competing requests exist

4 Caller must check the status of the last request using get status()

4 Used by ISS models which cannot be suspended while they have
outstanding bus requests

class simple_bus_non_blocking_if : public virtual sc_interface{

public: // non-blocking BUS interface

virtual void read (unsigned int unique__priority
, Int *data
, unsigned int address
, bool lock = false) = 0;

virtual void write (unsigned int unique_priority
, iInt *data
, unsigned int address
, bool lock = false) = 0;

virtual simple_bus_status get_status (unsigned int unique_priority) = 0;

}; // end class simple_bus_non_blocking_if




N

23

Non-Blocking Master Interface (c. 2)

L/

4 A non-blocking request can be made if the status of the last
request is either SIMPLE _BUS OK or SIMPLE_BUS ERROR

4 An error message is produced and the execution is aborted when
a new request is issued and the current one is not completed yet




24

Direct Master Interface

N

L/

4 These functions provide instantaneous read/write
¢ Simulated time will not advance and scheduler will not intervene
*» Data accesses go through the bus for proper routing of the requests
+» Data transfer is done without using bus protocol

4 Used for creating simulation monitors

*» Enable debuggers running on top of ISS models to read/write to
slaves without waiting for the simulation time to advance

class simple_bus_direct_if : public virtual sc_interface

{

public:
// direct BUS/Slave interface
virtual bool direct_read(int *data, unsigned int address) = 0;
virtual bool direct_write(int *data, unsigned int address) = 0;

}; // end class simple_bus_direct_if




Slave and Arbiter Interfaces

AN

25




N

Slave Interface

L/

# Describe the communication between the bus and the slave
*» Slave interface is used by the bus and implemented by every slave
¢ By definition, the slaves thus play the role of channels

¢ 2 sets of slave interface functions

+*» Normal slave interface
4+ Serve the default read/write to and from the slaves

¢ Direct slave interface
+ Similar to direct master interface
4 Multiple slaves can be connected to a bus
¢ Two functions can be used to obtain the memory range of a slave
> unsigned int start_address() const;
> unsigned int end_address() const;

26




27

Normal Slave Interface

N

L/

4 The read/write function performs a single data transfer and
returns immediately, and caller must check the return values

4 Return values of slave interface methods
s SIMPLE BUS WAIT: the slave issues a wait state
s SIMPLE_BUS_OK: the transfer was successful

* SIMPLE_BUS ERROR: an error occurs during the transfer

¢ If the return status is SIMPLE_ BUS WAIT, caller must call the
function again until the status becomes SIMPLE_ BUS OK

Map requests to the
appropriate slave

|

class simple_bus_slave_if : public simple_bus_direct_if

{

public: // Slave interface
virtual simple_bus_status read(int *data, unsigned int address) = 0;
virtual simple_bus_status write(int *data, unsigned int address) = 0;
virtual unsigned int start_address() const = 0;

virtual unsigned int end_address() const = 0;

}; // end class simple_bus_slave_if (Transfer a single data ite

Lto or from the slave

'




28

Arbiter Interface

N

L/

4 Describe the communication between the bus and the arbiter
¢ Arbiter interface is used by the bus and implemented in the arbiter
* By definition, the arbiter thus plays the role of channel

# Arbitrate competing requests issued by different masters
* The bus passes its outstanding requests to an arbiter on each cycle

¢ One of the requests is selected for execution based on arbitration
policy while the others are kept in the SIMPLE_BUS REQUEST state

(Outstanding requests are passed }

class simple_bus_arbiter_if : public virtual sc_interface{ Lto the arbiter as a vector

public:
virtual simple_bus_request* arbitrate(const simple_bus_request_vec &requests) = 0;

}; // end class simple_bus_arbiter_if




Master and Slave Request Status

N

L/

¢ Master request status (read by the master)

s SIMPLE BUS REQUEST
+ The request is issued and placed in the queue

s SIMPLE_BUS WAIT

+ The request is being served but not completed yet
s SIMPLE_BUS OK

+ The request is completed without errors
s SIMPLE_BUS ERROR

+ The request is finished but the transfer is not complete successfully
¢ Slave request status (read by the bus)

s SIMPLE _BUS WAIT

+ The slave issues a wait state
s SIMPLE BUS OK

+ The transfer was successful

s SIMPLE BUS ERROR
+ An error occurs during the transfer

29




Concepts of Operations

AN

30




31

Overall Execution Scheme

N

%

4 On the rising edge of the clock
*» Masters execute and may send requests to the bus

*» Bus maintains a set of outstanding requests including unfinished
ones from past cycles

4 On the falling edge of the clock
¢ Bus calls arbiter to select a request for execution

¢ Bus looks up the address of the request to determine the target slave
¢ Bus invokes the read()/write() functions of the target slave

* Functions return and indicate if the slave issues wait states
+ Bus will reissue the request on the next cycle upon receiving wait states

¢ Bus updates the status of the original master once the slave
completes the request




32

Overall Execution Scheme (c. 1) — Positive Edge

%

N

clock
I Master3
@ Arbiter /
[Masters issue '
bus requests —] port
) ) T
Slavel Slave?2 @D interface




N

Overall Execution Scheme (c. 2) — Negative Edge

%

clock

1

Slavel

o Arbiter

/The arbiter is

SqueZ

called and a

master request

\__ Isselected

33




N

Overall Execution Scheme (c. 3) — Negative Edge

%

clock

1

& The slave
read()/write()

method returns

\immediately

é Arbiter /

— port

A

¢)D interface

34




N

Overall Execution Scheme (c. 4) — Negative Edge

%

clock

1

Slavel

ﬁl’he bus updates\
the status of the

original maser
request

é Arbiter /

— port

SqueZ

&) interface

35




N

Two-Phase Synchronization

4 Masters and slaves are active on the rising edge of the clock
4 Bus and arbiters are active on the falling edge of the clock

¢ Two-phase synchronization
+» Communication between modules attached to the bus go through the bus
+ Communication is delayed by a clock cycle
% On the rising edge of the clock, no state changes of the bus are visible
*» On the falling edge of the clock, the bus arbitrates the competing requests

¢ Request-update mechanism
+ Communications between processes go through the primitive channels
+ Communication is delayed by a delta-cycle
*» In the evaluation phase, no state changes of primitive channels are visible
¢ In the update phase, primitive channels resolve competing requests

36




37

Two-Phase Synchronization (c. 1)

N

L/

4 Triggering the bus using the clock falling edge is just a technique
¢ Actual implementation may not use the falling edge of the clock

4 Designs with the two-phase synchronization and deterministic
arbitration rules are deterministic

¢ The order of process execution will not affect the execution results




Implementation of Masters

AN

38




39

clock: |
i i
Master2 Master3

Blocking Master — .
~ SC_MODULE(simple_bus_master_blocking) 4@

({ i

/7 ports
sc_in_clk clock; =] port

sc_port<{simple_bus_blocking_if> bus_port;
Slavel Slave2 .
@) interface

N

SC_HAS_PROCESS(simple_bus_master_blocking);

// constructor
simple_bus_master_blocking(sc_module_name name_
. unsigned int unique_priority
. unsigned int address
, bool lock
, int timeout)

void simple_bus_master_blocking: :main_action()
{
// storage capacity/burst length in words
const unsigned int mylength = Bx18;
int mydata[mylength];
: sc_module(name_) up91?neg lnttlé tatus:
, m_unique_priority(unique_priority) simple_bus_status status; [ Blocking burst read ]

., m_address(address)
., m_lock(lock)
, m_timeout(timeout)

while (true)
{
wait(); // ... for the next rising clock edge
status = bus_port->burst_read(m_unique_priocrity, mydata,

decl ti
// process declaration m_address, mylength, m_lock]);

SC_THREAD(main_action);

iti << clock; . . .
sensitive_pos cloc for (i = 0; i < mylength; ++i)

}
{
Issue requests at the mydata[i] += 1i; ) B N
T i, | boie e lod | EOCRN

}

ivate: . . ..
pravate status = bus_port->burst_write({m_unique_priority, mydata,

unsigned int m_unique_priority; _
unsigned int m_address; m_address, mylength, m_lggEli

bool m_lock;
int m_timeout;

wait(m_timeout, SC_NS);
) [ Blocking burst write ]

}; // end class simple_bus_master_blocking




Non-blocking Master

clock

N

{
int
int

{

}

void simple_bus_master_non_blocking: :main_action()

unsigned int addr = m_start_address;

mydata;
cnt = 0;

Slavel Slave2

wait(); // ... for the next rising clock edge
while (true)

bus_port->read(m_unique_priority, &mydata, addr, m_lock);

while ((bus_port->get_status(m_unique_priority) t= SIMPLE_BUS_OK) &&
(bus_port->get_status(m_unique_priority) t= SIMPLE_BUS_ERROR))

wait();

& |

-

—[ Non-blocking read

mydata += cnt;
cnt++;

bus_port->write(m_unique_priority, &mydata, addr, m_lock); /-

while ((bus_port->get_status(m_unique_priority) t= SIMPLE_BUS_OK) &&
(bus_port->get_status(m_unique_priority) t= SIMPLE_BUS_ERROR))
wait();

| Status polling

Non-blocking write

|

wait(m_timeout, SC_NS);
wait(); // ... for the next rising clock edge

addr+=4%; // next word (byte addressing)
if (addr > (m_start_address+0x80)) {
addr = m_start_address; cnt = 0;

}

| Status polling

40

@) interface




41

Direct Master

/_
N
SC_MODULE(simple_bus_master_direct) void simple_bus_master_direct::main_action()
{ {
// ports int mydata[4];
sc_in_clk clock; while (true)
sc_port<{simple_bhus_direct_if> bus_port; {
bus_port->direct_read(&mydata[®], m_address);
SC_HAS_PROCESS(simple_bus_master_direct); bus_port->direct_read(&mydata[1], m_address+i);
bus_port->direct_read(&mydata[2], m_address+8);
// constructor bus_port->direct_read(&mydata[3], m_address+12);
simple_bus_master_direct(sc_module_name name_
. unsigned int address if (m_verbose)
, int timeout sb_fprintf(stdout, "%g %s : mem[%4x:%x] = (¥%x, #x, %x, Zx)\n",
, bool verbose = true) sc_simulation_time(), name(), m_address, m_address+15,
: sc_module( name_) mydata[@], mydata[1], mydata[2], mydata[3]);
, h_address(address)
, h_timeout(timeout) wait(m_timeout, SC_NS);
, h_verbose(verbose) 3
{ }
// process declaration
SC_THREAD(main_action); (—\ clock:
) il i

|
// process Thread process with no Masterl Master2
void main_action(); static sensitivity il il

private: -
unsigned int m_address; 1 T =

int m_timeout;
bool m_verbose;

] port

}: /7 end class simple_bus_master_direct Slavel Slave?

@ interface




Implementation of Bus

AN

42




43

clock:

l |

jill 1]
Master2 ‘ ‘ Maﬁeﬁ ‘
Bus Implementation - -

A
N I e = port
class simple_bus (___QD__W (“QD——T
: public simple_bus_direct_if e Sieeg t) interface
. public simple_bus_non_blocking_if EP
. public simple_bus_blocking_if
. public sc_module private:
{ void handle_request();
public: void end_of_elaboration();
/7 ports simple_bus_slave_if = get_slave(unsigned int address);
sc_in_clk clock; simple_bus_request x get_request{unsigned int priority);
sc_port<{simple_hus_arbiter_if> arbiter_port; simple_bus_request x get_next_request();
sc_port<simple_bus_slave_if, 0> slave_port; void clear_locks();
) . [ Requests queued in the bus ]
SC_HAS_PROCESS(simple_bus); private:
bool m_verbose; /
// constructor simple_bus_request_uvec m_requests;
simple_bus(sc_module_name name_ simple_bus_request xm_current_request; é\
, bool verbose = false)

3: // end class simple_bus [Request granted for execution]

. m_verbose(verbose) Handle requests at the
, m_current_request(0) negative edge of clock Joid simple_bus: :main_action()
{ \ L
// process declaration
SC_METHOD(main_action);
dont_initialize();

: sc_module(name_) [

// m_current_request is cleared after the slave is dene with a
// single data transfer. Burst requests require the arbiter to
%// select the request again.

[Request collection and arbitration]

sensitive_neg << clock; if (!m_current_request)
m_current_request = get_next_request();
} t_request = get t_request()
,o',o"_pr'ocn_?ss _ if (m_current_request)
vold maln_actlon() : handle_r‘equest() : H Request executlon]
. if ('m_current_request
typedef sc_pvector<simple_bus_request *> cﬁea; locks() : a )

\ simple_bus_request_vec; }




clock: | |
] %ﬂ il
Masterl Master2 Maste
1] it

Request Collection

N

Slavel

SIaveZ

T e/

&) interface

{

simple_bus_request = simple_bus::get_next_request()

Collect bus
requests in
vector Q

// the slave is done with its action, m_current_request is
// empty, so go over the bag of request-forms and compose
// a set of likely requests. Pass it to the arbiter for the
// final selection
simple_bus_request_vec Q;
for (int i = 0; i < m_requests.size(); ++i)
{
simple_bus_request =request = m_requests[i];
if ((request->status == SIMPLE_BUS_REQUEST) ||
(request->status == SIMPLE_BUS_WAIT))
{
if (m_verbose)
sh_fprintf(stdout, "%g %s : request (#%d) [%s]\n",
sc_simulation_time(), name(),
request->priority, simple_bus_status_str[request->status]);
Q.push_back(request);

% Pass bus requests

if (Q.size() > 0) 3
return arbiter_port->arbitrate(Q); h as a vector to arblter
and return the request

return (simple_bus_request =)0;
to be executed

44




45

Request Arbitration Rules

N

L/

¢ If the request that was executed has its “lock” flag set, when the
master issue the requests to the bus

* If the request was a burst request and it is not yet completed, it is
always selected

*» If the master that issued the request is issuing another request in the
current cycle, then the master’s request is always selected




46

R@QU@SZ. Arb/tratlan ﬁmgizzgazzgig?:z::Tar‘bitr‘ate(const simple_bus_request_vec &requests)

{
W int i;

4 // at least one request is here
Highest Priority simple_bus_request xbest_request = requests[0];
RequeSt that is belng executed // highest priority: status==SIHMPLE_BUS_WAIT and lock is set:
and has been locked { // locked burst-action

N

S for (i = ©; i < requests.size(); ++i)
p {

simple_bus_request »request = requests[i];
if ((request->status == SIMPLE_BUS_WAIT) &&
(request->lock == SIMPLE_BUS_LOCK_SET))

// cannot break-in a locked burst

return request;

Second Priority
Request that is set to lock
9 at previous call

Third Priority )
Request of lower priority // second priority: lock is set at previous call,
number // i.e. SIMPLE_BUS_LOCK_GRANTED

for (i = 8; i < requests.size(); ++i)
if (requests[i]->lock == SIMPLE_BUS_LOCK_GRANTED)
clock: | | return requests[i];
W B o
// third priority: priority
MaE’T_Eerl MaSterz Maﬁsﬁeﬁ for (i = 1; i < requests.size(); ++i)
{
sc_assert(requests[i]->priority '= best_request->priority);
F_QJ%_%iD___Ql}_jiﬂ if (requests[i]->priority < best_request->priority)
Ej\ Bus best_request = requests[i];
}
1 port if (best_request->lock = SIMPLE_BUS_LOCK_NO)
) interface best_request->lock = SIMPLE_BUS_LOCK_GRANTED;

Slavel Slave2

return best_request;




Request Execution

CV

clock:

f

Master?2
il

|
il
Masterl

il

|
1]
Master3

il

& =
@~ = port
Slavel Slave?2 € interface

simple_bus_slave_if =
simple_bus::get_slave(unsigned int address)
{
for (int i =
{
simple_bus_slave_if xslave = slave_port[i];
if ((slave->start_address() <= address) &&
(address <= slave->end_address()))
return slave;

}

return (simple_bus_slave_if =)0;

B; i < slave_port.size(); ++i)

}

[ Routing of the requests}

void simple_bus: :handle_request()

{

{M aster request status

SIMPLE_BUS_WAIT; e

get_slave(m_current_request->address);

m_current_request->status =
simple_bus_slave_if »slave =

simple_bus_status slave_status =

if (m_current_request->do_urite)

slave_status = slave->write(m_current_request->data,
m_current_request->address);

SIMPLE_BUS_OK ;

else
slave_status = slave->read(m_current_request->data,

m_current_request->address);

S”Et‘:h(ﬂa”e-s“t”s) [Perform atomic slave read/write

case SIMPLE_BUS_ERROR:
m_current_request->status = SIMPLE_BUS_ERROR;
m_current_request->transfer_done.notify();
m_current_request = (simple_bus_request =)0;
break;

case SIMPLE_BUS_OK:
m_current_request->address+=4; //next word (byte addressing)
m_current_request->datat+;
if (m_current_request->address > m_current request->end address)

// burst-transfer (or single trar%:). Update master request

m_current_request->status = SIMPLE_BUS_OK; I
m_current_request->transfer_done.notify(); Event notify ]
m_current_request = (simple_bus_request =)0; .
) Clear request ]
else
{ // more data to transfer, but the (atomic) slave transfer is done
m_current_request = (simple_bus_request =)0;
}
break;
case SIMPLE_BUS_WAIT:
// the slave is still processing: no clearance of
//the current request
break;
default:
break;

}

Event notify ]

Clear request ]

Clear request ]




Implementation of Blocking Interface

48

/_
N
simple_bus_status simple_bus: :burst_read(unsigned int unique_prierity clock [ |
. int xdata il [t
, unsigned int start_address Masterl ‘ Master2 ‘ ‘ Master3 ‘
. unsigned int length il il
, bool lock)
{
simple_bus_request xrequest = get_r‘equest(unique_pr‘ioritg);6\ o
request->do_uwrite = false; // we are reading
request->address = start_address; ) = port
request->end_address = gtart_address + (length-1)x4; ‘ Slavel ‘ ‘ Slave? _
request->data = data; @) interface

if (lock)

request->lock = (request->lock == SIMPLE_BUS_LOCK_SET) ?

SIMPLE_BUS_LOCK_GRANTED : SIMPLE_BUS_LOCK_SET;
request->status = SIMPLE_BUS_REQUEST;
wait{request->transfer_done);

wait{clock->posedge_event());
return request->status;

1

[ Wait for the transaction to complete }

simple_bus_request =
simple_bus: :get_request(unsigned int priority)
{
simple_bus_request »request = (simple_bus_request =)0;
for (int i = 0; i < m_requests.size(); ++i)
{
request = m_requests[i];
if ((request) &&
(request->priority == priority))
return request;
}
request = new simple_bus_request;
request->priority = priority;
m_requests.push_back(request);
return request;




Implementation of Non-blocking, Direct Interfaces

N

L/

49

{

if (tslave) return false;
return slave->direct_read(data, address);

3 ( )

bool simple_bus::direct_read(int =data, unsigned int address)

simple_bus_slave_if xslave = get_slave(address);

[ Non-blocking Read ]

L Direct Read J

clock:

t

|
M
Mastgrz Master3
il i

|
il
Masterl
il

)

—

<] port
¢D interface

Slavel Slave2

void simple_bus: :read(unsigned int unique_priority
., int xdata
, unsigned int address
. bool lock)

simple_bus_request xrequest = get_request{unique_priority);

// abort when the request is still not finished

sc_assert((request->status == SIMPLE_BUS_OK) ||
(request->status == SIMPLE_BUS_ERROR));

request->do_urite false; // we are reading

request->address = address;
request->end_address = address;
request->data = data;

if (lock)
request->lock = (request->lock == SIMPLE_BUS_LOCK_SET) ?
SIMPLE_BUS_LOCK_GRANTED : SIMPLE_BUS_LOCK_SET;

request->status = SIMPLE_BUS_REQUEST;

p
L No Wait Statements T




Implementation of Slaves

AN

50




ol

class simple_bus_fast_mem
Slave 1: Fast Memory - public SiupLé bus_slave_if
" , public sc_module
] {
N public:
clock // constructor
| | simple_bus_fast_mem(sc_module_name name_
il ] , unsigned int start_address
Master1 Master2 Master3 » unsigned int end_address)
EE EE [E : sc_module(name_)
., m_start_address(start_address)
. m_end_address(end_address)
{
4@ = M unsigned int size =
ED (m_end_address-m_start_address+1) /4;
MEM = new int [size];
for (unsigned int i = 0; i < size; ++i)
) < port MEM[i] = ©;
ﬂ Slave2 : }
&) interface
qﬂ // direct Slave Interface
inline bool ) ) ) ) // Slave Interface
simple_bus_fast_mem: :direct_read(int xdata, unsigned int address)| .~
{
return (Fead(data, addFESS) == SIHPLE_BUS_OK); unsigned int start_address() const;
} unsignhed int end_address() const;
inline simple_bus_status simple_bus_fast_mem: :read(int xdata private:
. unsigned int address) int x MEM:
{ unsigned int m_start_address;
xdata = MEM[(address - m_start_address)/4]; unsigned int m_end_address:
return SIMPLE_BUS_OK: -7
} }; // end class simple_bus_fast_mem




Initiate the counters of wait states.
Bus will keep invoking the same
function until the return is
SIMPLE BUS OK.

Slave 2: Slow Memory

A
N
inline simple_bus_status simple_bus_slow_mem: :readfint =data
, unsigned int address
{
// accept a new call if m_wait_count < @)
if (m_wait_count < 0)
{
m_wait_count = m_nr_wait_states;
return SIMPLE_BUS_WAIT;
}
if (m_wait_count == 0)
{
xdata = MEM[(address - m_start_address)/4];
return SIMPLE_BUS_OK;
}
return SIMPLE_BUS_WAIT;
}
inline void simple_bus_slow_mem: :wait_loop()

Do nothing without
read/write request

{
if (m_wait_count >= 0) m_wait_count--;
}

inline bool
simple_bus_slow_mem: :direct_read(int =data, unsigned int address)

{

xdata = MEM[(address - m_start_address)/4];
return true;

}

Works to be done are minimized in
the frequently activated method process

class simple_bus_slow_mem
: public simple_bus_slave_if
, public sc_module
{
public:
f/ ports
sc_in_clk clock;

SC_HAS_PROCESS(simple_bus_slow_mem) ;

/7 constructor
simple_bus_slow_mem(sc_module_name name_
. unsigned int start_address
. unsigned int end_address
, unsigned int nr_wait_states)
: sc_module(name_)
. m_start_address(start_address)
. m_end_address(end_address)
. m_nr_wait_states(nr_wait_states)
, m_wait_count(-1)

/7 process declaration
SC_METHOD(wait_loop]);
dont_initialize();
sensitive_pos << clock;

3 .
[ Method process]

// process
void wait_loop();

// direct Slave Interface

unsigned int start_address() const;
unsighed int end_address() const;

private:
int =MEM;
unsigned int m_start_address;
unsighed int m_end_address;
unsigned int m_nr_wait_states;
int m_wait_count;

}: // end class simple_bus_slow_mem




High-Performance Modeling Techniques

AN

53




N

o4

High-Performance Modeling Techniques

L/

4 Simple modules are modeled without any processes at all
s Example: fast mem and arbiter
4 Blocks to be activated most frequently should use SC_METHOD
s SC_METHOD consumes less memory and execute more quickly
¢ Frequently activated processes should do as little work as possible

s Example: in slow_mem, there is a clocked SC_METHOD that simply
decrements a counter to indicate when the wait states comes to
completion




N

Comparisons between TILM and RTL

L/

4 RTL uses signals for communication; TLM employs transactions
¢ Transactions are modeled by function calls

+» Both control and data are transferred along with function calls
+ There is no pin-accuracy
+ Data can be bundled and passed more efficiently

¢ Pointers to data are transferred between modules by transaction
+» Enable one module to very efficiently copy blocks of data to another
s Example: the burst _read/burst_write transactions

¢ RTL uses low-level bit vectors; TLM uses high level C data-types

¢ RTL uses static sensitivity; TLM uses dynamic sensitivity
* RTL modules execute on every cycle even if no work is being done

* TLM modules enable execution when they have real work to perform
+ Processes are suspended until the bus requests complete

55




o6

common Questions

N

L/

¢ What is the distinction between modules and hierarchical channels?

* In an informal way
+ Hierarchical channels.: implement interface functions and contain no ports
+ Moadules. do not implement interface functions and contain ports

¢ In reality
+ Hierarchical channels and modules are the same thing

¢ In simple_bus design

*» Blocks implementing transactions are designed to be channels that
inherit form their transaction interface

¢ Blocks that initiate transactions are designed to be modules that
allow them to access the channels

** The bus implements several interface functions and it also has ports
to access the interface of the slaves and arbiter




o7

Common Questions (c. 1)

N

L/

4 Why do slaves implement slave interface rather than having
normal ports like other modules?

¢ Eliminate the need for a process within the fast mem and arbiter
¢ Allow minimizing the amount of works in the process of slow_mem

4 Why are multiple slave channels attached to the same port on the
bus?

+» Do not want to fix the number of slaves

** Allow binding as many slaves to the bus as wished during elaboration

¢ Multi-port feature of SystemC
+sc_port<simple bus_slave_if, 0> slave port
+ slave_port.size() returns the number of channels bounded to the port
+ slave_port[N] separates slave channels bounded to the port




