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Abstract—This paper introduces an online motion rate adap-
tation scheme for learned video compression, with the aim of
achieving content-adaptive coding on individual test sequences
to mitigate the domain gap between training and test data. It
features a patch-level bit allocation map, termed the α-map, to
trade off between the bit rates for motion and inter-frame coding
in a spatially-adaptive manner. We optimize the α-map through
an online back-propagation scheme at inference time. Moreover,
we incorporate a look-ahead mechanism to consider its impact
on future frames. Extensive experimental results confirm that
the proposed scheme, when integrated into a conditional learned
video codec, is able to adapt motion bit rate effectively, showing
much improved rate-distortion performance particularly on test
sequences with complicated motion characteristics.

Index Terms—content-adaptive learned video compression,
conditional inter-frame coding, bit allocation.

I. INTRODUCTION

End-to-end learned video compression has been an active
research area since the advent of the seminal work DVC [1].
Much research has been focused on improving temporal
prediction for residual coding in the pixel domain [2]–[5] or
the feature domain [6]. Recently, a new school of thoughts
emerged, replacing residual coding with conditional cod-
ing [7]–[9] and making a significant breakthrough in com-
pression performance.

Although showing promising coding results, learned video
codecs may suffer from generalization issues. The domain gap
between training and test data often leads to their sub-optimal
coding performance and/or poor generation on individual test
sequences.

With the aim of achieving better rate-distortion performance
on individual test sequences at inference time, content-adaptive
coding with learned codecs attracts lots of attention. [10]–[12]
propose to optimize the latent representations of individual
images/sequences or the encoder through back-propagating
a rate-distortion loss at inference time. [13], [14] further
include the decoder for end-to-end optimization and signal the
optimal decoder parameters in the bitstream. Taking a different
approach, [15] reserves external coding options for learned
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Fig. 1: Conditional augmented normalizing flow-based inter-
frame codec [9].

codecs to perform resolution-adaptive coding of the flow
map or the image latents. Similarly, [16] creates a pixel-wise
importance map that can be specified for spatially-adaptive
image coding. While the aforementioned methods may invoke
back-propagation or rate-distortion optimization at inference
time, [17] represents a feed-forward approach that uses a
neural network to predict coding modes from observing the
hyperprior for resolution-adaptive flow and residual coding.

Inspired by [16], we introduce a patch-level bit allocation
map, termed the α-map, to a learned video codec. The α-
map offers a mechanism to trade off between the bit rates
for motion and inter-frame coding in a spatially-adaptive
manner. To optimize the α-map for content-adaptive coding,
we propose an online back-propagation scheme with look-
ahead to consider its impact on future frames. Extensive
experimental results confirm the effectiveness of the proposed
method.

II. RELATED WORK

We base our scheme on a conditional augmented nor-
malizing flow-based (CANF-based) inter-frame codec [9].
CANF encodes an input frame xt conditioned on its motion-
compensated reference frame xc. Fig. 1 depicts the framework
of CANF-based inter-frame codec. The encoding process
transforms the augmented inputs (xt, ez, eh) into the latent
representations (x2, ẑ2, ĥ2) by conditional autoencoding and
hyperprior transforms. The latent variables ẑ2 and ĥ2 captures
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Fig. 2: The P-frame coding architecture with our proposed
scheme.

the information needed to signal the transformation from the
input xt to x2, which is regularized to approximate xc during
training. The decoding process first sets x2 to xc, followed by
decoding ẑ2 and ĥ2 to perform inverse transformation from
xc to xt.

III. PROPOSED METHOD

A. System Overview

Fig. 2 depicts the P-frame coding architecture with our
proposed scheme. It comprises a flow estimation network
(PWC-Net [18]), a motion compensation network (MC-Net),
and two α-map-guided codecs, which are the motion codec
and the conditional inter-frame codec. The former encodes the
optical flow map estimated between the coding frame xt and
its reference frame x̂t−1, while the latter is adapted from [9]
to encode the coding frame xt conditionally on the motion-
compensated reference frame xc. xt and x̂t−1 are of size
W ×H . In this work, the α-map of dimension W/64×H/64
serves as a prior conditioning signal used to trade off between
the bit rates consumed by the motion and the inter-frame
codecs. Each component αi ∈ [−1, 1] in the α-map is a
real number that corresponds to a distinct 64 × 64 patch i
in the input frame. By altering the α-map, a spatially-varying
trade-off between the bit rates for motion coding and inter-
frame coding is achieved. Moreover, the α-map is adapted on
a frame-by-frame basis, allowing frame-adaptive optimization.

B. Conditional Feature Transformation with The α-Map

To adapt the P-frame coding pipeline to the α-map, we
incorporate Spatial Feature Transform (SFT) layers and SFT
Residual Blocks (SFT Resblk) [16], [19] into the motion
and the conditional inter-frame codecs. Take our CANF-
based inter-frame codec in Fig. 3 as an example. SFT applies
spatially-adaptive affine transformation to the latent features F
in the encoding/decoding transforms, with the element-wise
affine parameters (γ, β) derived from the prior conditioning
modules. In other words, SFT (F |γ, β) = γ⊙F+β. It is to be
noted that the inputs to the prior conditioning modules include
not only the α-map, but also the corresponding input signals to
the encoding/decoding transforms. Before being concatenated

with these input signals, the α-map (of size W/64 × H/64)
is scaled accordingly to match their dimensions.

During the encoding process, the target xt is transformed
into xc, where the latent ẑ2 captures the information needed
to signal the transformation while the α-map determined
externally (Section III-D) is fed to the prior conditioning
modules to adapt the latent features. In particular, we signal
the α-map implicitly in the hyperprior ĥ2. That is, during
decoding when xt is recovered from xc, an approximate α-
map is extracted from ĥ2 by a lightweight network. Notably,
the discrepancy in α-map for encoding and decoding may
contribute to the reconstruction error of xt.

Our motion codec follows a similar architecture to [20] and
is likewise guided by the α-map.
C. Training Objective

We adopt the following objective function to train our
system end-to-end. The patch-level bit rate RMi

for motion
coding is weighted exponentially with a factor δαi against the
patch-level bit rate RRi for inter-frame coding according to
the α-map.

L = λ×D +RW , (1)

RW =

N∑
i=1

δαi ×RMi
+RRi

, (2)

where the base δ = 10 of the exponential is chosen empirically
to compensate for the uneven ratio between RMi

and RRi
. N

is the number of 64 × 64 patches in the input frame. It is
seen that the model is trained to suppress RMi

for higher
RRi when αi = 1 and otherwise when αi = −1. RMi , RRi

are weighted equally by setting αi = 0. During training, the
α-map is randomized by having α = tanh(x), where x is
drawn from a standard normal distribution. This ensures that
the model is able to react to any α-map given at inference
time.

D. Determining The α-Map

We determine the α-map for content-adaptive bit allocation
between motion and inter-frame coding. To this end, we
propose an online back-propagation scheme. The idea is to
consider the α-map associated with each input frame as coding
parameters to be updated on-the-fly by back-propagation. We
take the pre-trained model from Section III-C and minimize
Eq. (1) with respect to the α-map, with RW taking the form
of

∑N
i RMi

+RRi
, where we discard the factor δαi because

we wish to arrive at an α-map that can best trade off between
the bit rates for motion and inter-frame coding in order to
minimize the rate-distortion cost for the current coding frame.
In a sense, this approach is sub-optimal because it optimizes
greedily the α-map of a coding frame without regard to its
impacts on future frames (see Fig. 4a).

To explore the potential of our scheme, we additionally
experiment with a look-ahead mechanism that optimizes the
α-map of a coding frame by taking into account its impact
on future frames. The idea is illustrated in Fig. 4b, where
we minimize the sum of the rate-distortion costs over two
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Fig. 3: The detailed architecture of our α-map-guided conditional inter-frame codec, where N=C=128, M=192. Following [9],
we fix ez at 0 during training and evaluation. For the hyperprior branch, we draw eh ∼ U(−0.5, 0.5) for simulating the
quantization of the hyperprior ĥ2 during training, and set it to 0 when ĥ2 is rounded during evaluation.
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Fig. 4: The determination of the α map (a) without and (b)
with the look-ahead mechanism. Black, red, and gray colors
refer to coded frames, coding frames, and frames to be coded,
respectively.

consecutive video frames by updating their α-maps simulta-
neously. In particular, the resulting α-map of the first frame in
display order is used for coding the first frame, whereas that
of the second frame serves as its initial α-map, which is to
be further optimized together with the subsequent frame in a
sliding window manner.

IV. EXPERIMENTS
A. Settings

Training details: We use Vimeo-90k dataset [21] to train

our model in two stages. First, we train our model without
the prior conditioning modules. We then include the prior
conditioning modules to train the entire system end-to-end.
The Vimeo-90k dataset contains 91,701 sequences of size
448× 256. Video frames are randomly cropped to 256× 256
for training. We adopt Adam optimizer [22]. The learning rate
is fixed at 1e−4 before 300k iterations, and is then decreased
to 1e−5. The λ in Eq. (1) is set to 256, 512, 1024, 2048.

Evaluation methodologies: For evaluation, we test our
method on UVG [23], HEVC Class D [24] and 5 challenging
sequences from CLIC’22 [25] validation and test datasets. The
sequences selected from CLIC’22 have complex motion, e.g.
fast motion, zoom-in, or rotation. Remarkably, we downscale
the sequences in UVG (of size 1920×1080) and CLIC’22 (of
size 1920 × 1080 or 2048 × 1080) by a factor of 4 (denoted
as UVG∗ and CLIC-MIX∗ in Table II), in order to facilitate
the α-map optimization with limited GPU memory. We set
the intra period to 32, and encode the first 96 frames for all
the test sequences. We evaluate the reconstruction quality in
PSNR-RGB and the bit-rate in bits-per-pixel (bpp).

Baseline methods: The anchor for comparison uses the



-Maps Bit Allocation Maps Compressed  
Optical Flow Maps 

Fig. 5: Visualization of the α-maps, the bit allocation maps for motion coding, and the compressed optical flow maps.

TABLE I: Changes in bit rate for motion and inter-frame
coding in response to varying the α-map.

Bit Rate (10−3 bpp)
Motion Coding Inter-frame Coding

α=1 1.67 (-24.8%) 51.85 (+6.5%)
α=0 2.22 (0.0%) 48.67 (0.0%)
α=-1 2.86 (+28.8%) 47.13 (-3.2%)

same learned video codec as ours. Specifically, it adopts
ANFIC [20] for I-frame coding and the architecture in Fig. 2
for P-frame coding. Particularly, it sets the α-map uniformly
to 0; in other words, there is no content-specific optimization
for motion and inter-frame coding. We additionally compare
our scheme with DCVC [8], which is the state-of-the-art
learned video codec. For a fair comparison, we also use
ANFIC [20] as the I-frame codec for DCVC [8].

B. Effectiveness of The α-map

Table I shows the trade-off between the bit rates used for
motion and inter-frame coding on UVG dataset when we alter
the α-map from 1 to -1. In this experiment, the α-map has
a uniform value across spatial locations. It is seen that as
compared to α = 0, the bit rate for motion coding decreases
by nearly 25% (respectively, increases by nearly 29%) when
α = 1 (respectively, α = −1). Accordingly, the α-map has
the opposite effect on the bit rate of inter-frame coding, even
though the change is relatively modest.

Fig. 5 further visualizes how the α-map impacts the motion
bit rate and the quality of the compressed optical flow map
patch-wisely. In this experiment, the α-map is divided into two
halves. The left halve has a fixed α value of 0, while that of the
right halve changes from 1 to -1 (from top to bottom). We see
that the motion bit rate increases with the decreasing α value
while the compressed optical flow map has increasing details.
These results validate that our model reacts to the given α-map
in the way that we want it to.

C. Rate-Distortion Performance
Table II presents the BD-rate comparison relative to the

anchor, which sets the α-map uniformly to 0. The two variants
(Ours1 vs. Ours2) of the proposed method refer to optimizing
the α-map by considering only the current frame and by
additionally looking ahead to one future frame, respectively
(See Section III-D). From Table II, both variants exhibit 2%-
5% rate savings than the anchor, and generally outperform
DCVC [8]. The look-ahead variant (Ours2) achieves slightly
higher gain at the cost of higher buffering requirements. It is
worth noting that the gain of these variants is most obvious on
test sequences with fast motion, e.g. Jocky, ReadySteadyGo
and RaceHorses. In comparison with the other sequences,
they have higher motion bit rates. As such, adapting the
motion bit rate to the content of these sequences exerts a
more significant influence on the rate-distortion performance.
The same observation also holds true for those challenging
sequences selected from CLIC’22 [25] (CLIC-MIX∗). Last
but not least, it is seen that conducting content-specific coding
optimization through the adaptation of the α-map consistently
shows gain over different test sequences. This suggests that
there exists a domain gap between training and individual
sequences, and that our scheme is able to help reduce the
gap.

Fig. 6 visualizes how the compressed optical flow map
changes with the α-map optimization. In this example, the α-
map has a tendency to be decreased in exchange for a higher
motion rate to represent the complex structure inherent in the
optical flow map. It seen that the resulting flow map preserves
more details than the initial flow map compressed with α = 0.

V. CONCLUSION

This paper presents a content-adaptive motion rate adap-
tation scheme for learned video compression. It uses a bit
allocation map to trade off between the bit rates for motion
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Fig. 6: Visualization of the initial optical flow map with α = 0 (left) and the resulting optical flow map (middle) with the
optimized α-map (right).

TABLE II: BD-rate comparison.

Datasets ID BD-rate (%) PSNR
DCVC Ours1 Ours2

UVG∗

Beauty -0.88 -2.49 -2.77
Bosphorus -1.01 -2.12 -2.60
HoneyBee 9.42 -1.36 -1.51

Jockey -3.19 -4.30 -4.61
ReadySteadyGo -8.91 -3.89 -4.07

ShakeNDry -15.83 -0.68 -1.40
YachtRide 4.58 -3.12 -3.28

HEVC-D

BasketballPass -0.70 -2.16 -3.17
BlowingBubbles 5.49 -3.27 -3.19

BQSquare 38.91 -2.47 -2.66
RaceHorses 5.92 -3.39 -3.32

CLIC-MIX∗

5d8f0 (zoom-in) 44.32 -2.04 -2.28
25f0c (fast motion) 7.78 -1.59 -2.11

4761c (rotation) 26.41 -4.49 -5.16
a89f6 (zoom-out) -4.09 -3.89 -3.98
cda52 (shaking) 4.46 -2.46 -2.78

and inter-frame coding in a spatially-adaptive manner. The
map is optimized through online back-propagation. Our major
findings include: (1) content-adaptive motion rate adaptation
helps mitigate the domain gap between training and test data;
(2) the proposed scheme is found to be more effective on test
sequences with complicated motion; and (3) our look-ahead
mechanism is able to better optimize the bit allocation map
for higher coding gain.
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