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Abstract—This paper introduces a learned hierarchical B-
frame coding scheme in response to the Grand Challenge
on Neural Network-based Video Coding at ISCAS 2023. We
address specifically three issues, including (1) B-frame coding,
(2) YUV 4:2:0 coding, and (3) content-adaptive variable-rate
coding with only one single model. Most learned video codecs
operate internally in the RGB domain for P-frame coding. B-
frame coding for YUV 4:2:0 content is largely under-explored.
In addition, while there have been prior works on variable-rate
coding with conditional convolution, most of them fail to consider
the content information. We build our scheme on conditional
augmented normalized flows (CANF). It features conditional
motion and inter-frame codecs for efficient B-frame coding. To
cope with YUV 4:2:0 content, two conditional inter-frame codecs
are used to process the Y and UV components separately, with the
coding of the UV components conditioned additionally on the Y
component. Moreover, we introduce adaptive feature modulation
in every convolutional layer, taking into account both the content
information and the coding levels of B-frames to achieve content-
adaptive variable-rate coding. Experimental results show that our
model outperforms x265 and the winner of last year’s challenge
on commonly used datasets in terms of PSNR-YUV.

Index Terms—video compression, YUV 4:2:0 format, variable
rate, adaptive coding

I. INTRODUCTION

Despite the fact that the recent developments of end-to-
end learned video compression have shown promising coding
performance, there remain many issues to be addressed. Most
of the existing works [1]–[10] focus on P-frame coding, while
B-frame coding, which allows the use of both the future and
past reference frames for higher coding efficiency, is largely
under-explored. Among the others, B-frame coding needs to
address excessive motion overhead and the efficient use of the
two reference frames. Besides, most learned codecs operate
internally in the RGB 4:4:4 domain, even when the input is
YUV 4:2:0 content. The conversation from YUV 4:2:0 to RGB
4:4:4 is introduced before compression to tackle the uneven
spatial resolutions of the Y (luminance) and UV (chrominance)
components. It is also common that multiple networks are used
to achieve variable-rate compression, which is impractical in
many real-world applications.

There have been few attempts at B-frame coding. Wu et
al. [11] perform contextual coding of a B-frame based on the
motion-compensated, multi-scale features extracted from the
two reference frames. The idea is coined conditional (inter-
frame) coding in [12], which additionally introduces one-
stage, conditional motion coding without estimating flow maps
explicitly. Following a more traditional approach, the works
in [6], [13], [14] first encode two optical flow maps derived
from the past and future references, followed by synthesizing

a predicted frame for residual coding in the feature or pixel
domain. To reduce motion overhead, Pourreza et al. [15]
interpolate a predicted frame as a reference frame for coding
a B-frame with the P-frame codec.

To achieve YUV 4:2:0 coding, Egilmez et al. [16] propose
a branched network that processes Y and UV components sep-
arately before fusing their latents into a combined representa-
tion for coding. The other straightforward approaches include
applying the space-to-depth conversion of the Y component,
or coding Y and UV components separately. The latter calls
for separate Y and UV codecs. These ideas are studied for
image compression only.

To achieve variable-rate compression, it is common to
introduce conditional convolution to adapt feature distribu-
tions [17]–[19] according to a rate-dependent hyperparameter.
Lately, the idea of conditional convolution is extended to video
coding [20] and [21], to achieve variable-rate compression
with a single model.

In response to the Grand Challenge on Neural Network-
based Video Coding at ISCAS 2023 [22], we propose a
hierarchical B-frame coding system for YUV 4:2:0 content.
Inspired by [23], we adopt conditional augmented normalizing
flows (CANF) to perform conditional motion and inter-frame
coding. In particular, we encode the Y and UV components by
two separate conditional codecs, where the coding of the UV
components is conditioned additionally on the Y component.
Moreover, to achieve content-adaptive variable-rate coding
with a single model, we extend conditional convolution to
accommodate not only the rate parameter, but also the coding
levels of B-frames and the output features of the convolutional
layers. Experimental results show that our model outperforms
x265 [24] and the winner [21] of last year’s challenge [25] on
commonly used datasets in terms of PSNR-YUV.

II. RELATED WORK

This section reviews the basics of the CANF-based inter-
frame coding [23], to ease the understanding of our scheme.
Fig. 1 illustrates its architecture for inter-frame coding, which
aims to learn the conditional distribution p(xt|xc) of the
coding frame xt given its motion-compensated reference frame
xc. In [23], this is achieved by maximizing the conditional
augmented likelihood p(xt, ez, eh|xc), where ez, eh are the
two augmented noise inputs. From the operational perspective,
xc serves as the conditioning factor in the autoencoding
transforms, composed of {gencπi

, gdecπi
}2i=1, which convert (from

left to right) xt into xc, with the quantized latent ẑ2 capturing
the information needed to instruct the conversion and ĥ2 taking
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Fig. 1: Illustration of (a) the CANF-based inter-frame codec,
which is used for coding the Y component in this work, and
(b) the CANF-based inter-frame codec for coding the UV
components, where xa represents the coded Y component.

the role of the hyperprior. The conversion between xt and xc

is approximate and lossy. The same CANF-based codec can
also be utilized to encode optical flow maps conditionally. To
this end, a flow map predictor must be created to serve as the
condition.

III. PROPOSED METHOD

A. System Overview

Fig. 2 presents an overview of our proposed method. As
shown, the encoding of a B-frame x420

t begins with using the
motion estimation network (MENet) operating internally in
the YUV 4:4:4 domain to obtain bi-directional optical flow
maps mt→t−k,mt→t+k according to its two reference frames
x̂420
t−k, x̂

420
t+k, respectively. The resulting flow maps are com-

pressed jointly by the CANF-based conditional motion codec
(M,M−1) given the conditioning signals mp

t→t−k,m
p
t→t+k

generated by the motion prediction network (MPNet). The de-
coded flow maps m̂t→t−k, m̂t→t+k are used for bi-directional
motion compensation. Particularly, we adopt two separate
motion compensation networks (MCNet-Y, MCNet-UV) to
synthesize the motion-compensated frames x̂y

c , x̂
uv
c for Y and

UV components, respectively. x̂y
c , x̂

uv
c serve as the condi-

tioning signals for conditional inter-frame coding of xy
t , x

uv
t

to obtain the reconstructed Y and UV components x̂y
t , x̂

uv
t ,

respectively. Notably, for coding the UV components, we
introduce the reconstructed Y component as an additional
conditioning signal. The following sections elaborate on these
proposed modules.

B. Conditional Bi-directional Motion Coding

The proposed conditional motion codec follows the same
CANF-based design as Fig. 1 (a). In the present context, we
concatenate mt→t−k,mt→t+k to form a 4-channel input for
coding (i.e. xt in Fig. 1 (a) becomes the concatenated signal
from mt→t−k,mt→t+k). Likewise, the predicted flow maps
mp

t→t−k,m
p
t→t+k output by the motion prediction network

Fig. 2: The proposed B-frame coding framework. x420
t denotes

the current coding frame and x̂420
t−k, x̂

420
t+k are the two previously

reconstructed reference frames. ”Separate” is an operation that
separates the Y and UV components. ”↓ ×2” is the down-
sampling operation by a factor of 2. Note that in down-
sampling an optical flow map (m), the values of the flow map
are also reduced by half.

(MPNet) are concatenated to replace xc in Fig. 1 (a) as
the conditioning signal for motion coding. This allows the
motion codec to exploit freely the correlation inherent in
mt→t−k,mt→t+k,m

p
t→t−k, and mp

t→t+k.

C. Motion Estimation and Compensation Networks

As illustrated in Fig. 2, motion estimation and motion
compensation are done by MENet and MCNet, respectively.
In an effort to re-use PWCNet [26] without introducing any
significant change, we interpolate the UV components and fine
tune the PWCNet [26] to perform motion estimation in the
YUV 4:4:4 domain. The flow maps thus obtained have the
same resolution as the Y component and are downscaled to
motion compensate the UV components.

For motion compensation, separate MCNets are used to
process Y and UV components distinctively. Similar to the
motion compensation network in [1], our MCNet includes
as inputs the Y/UV components from the future and past
reference frames, and the decoded flow maps, which are used
for bi-directional backward warping. Notably, we reduce the
number of channels from 64 to 48 to avoid an excessive
increase in model size due to the use of two MCNets.

D. Conditional Inter-frame Coding in the YUV Domain

Two conditional inter-frame codecs are used to code the Y
and UV components separately. They follow the CANF-based
coding schemes in Figs. 1 (a) and (b), respectively, where xc

denotes the motion-compensated Y or UV components. Be-
cause the Y component preserves most of the information, we
use the decoded Y component x̂y

t as an additional conditioning



signal xa in Fig. 1 (b) when coding the UV components.
Notably, we remove the hyperprior [27] from the UV codec
and use only the temporal prior [3], [9] to reduce complexity.
A side experiment shows that this design choice has little
impact (<1% rate inflation) on coding performance.

E. Adaptive Feature Modulation

Adaptive feature (AF) modulation is to adapt the feature
distribution in every convolutional layer, in order to achieve
variable-rate compression with a single model and content-
adaptive coding. The AF modulation is placed after every
convolutional layer in the motion and inter-frame codecs. As
shown in Fig. 3, it outputs channel-wise affine parameters,
which are used to dynamically adjust the output feature
distributions.

As compared to the previous works [20], [21], our scheme
has two distinctive features. One is that we introduce the
coding level C of a B-frame as its contextual information to
achieve hierarchical rate control. This is motivated by the fact
that with hierarchical B-frame coding, the reference quality
of a B-frame varies with its coding level. The additional
contextual information from the coding level allows greater
flexibility in adjusting the bit allocation among B-frames. We
note that most previous works use only a single rate parameter
λ as the contextual information without distinguishing between
B-frames of different coding levels. Additionally, our AF
module incorporates a global average pooling (GAP) layer to
summarize the input feature maps with a 1-D feature vector. As
such, our AF module is able to adapt the feature distribution
in a content-adaptive manner.

In our current implementation, C=0,1 has only two values
because during training, there are only a limited number of
coding levels (see Sec. III-F). C=0 means the current coding
B-frame will serve as a reference frame for the other B-frames
at higher coding levels, while C=1 indicates that it is at the
highest coding level and will not be utilized for reference.
See Table I for an example. Moreover, we choose λ ∈
{16384, 4096, 1024, 256, 128} to encode B-frames at a finite
number of rate points. To achieve fine-grained rate control, we
incorporate an intra codec that supports continuous-step rate
adaptation. To encode a video sequence at a specific rate point,
we first choose from a set of pre-determined combinations of
λ’s for the intra and inter codecs the one which yields a rate
point matching closely the target rate. We then fine tune the
λ of the intra codec to fit the target rate precisely.

F. Training Loss

Our training objective function is given by

L =
1

5

∑
t

λ · [6d(xy
t , x̂

y
t ) + 2d(xuv

t , x̂uv
t )]/8 +Rt, (1)

where t is the frame index, d(·, ·) measures the mean-squared
error between the input and the output Y/UV components (the
weighting factors 6 and 2 follow the evaluation metrics of the
challenge [22]), and Rt is the bit rate consumed by all the
codecs. We train our scheme on 5-frame training sequences,

Softplus

Linear

Linear

Sigmoid
Linear

Softmax

GAP

Linear
Concat

Concat

Feature Map Adaptive Feature Map

Fig. 3: Adaptive feature (AF) modulation for content-adaptive
variable-rate coding. C, λ denote the coding level and the rate
parameter, respectively. ⊗,⊕ are the channel-wise multiplica-
tion and addition, respectively.

TABLE I: 5-frame hierarchical B-prediction

t 1 2 3 4 5
frame-type I B2 (C=1) B1 (C=0) B2 (C=1) I

each of which is encoded as two-level hierarchical B-frames
with an intra-period 4 (see Table I).

IV. EXPERIMENTS

A. Setup

We train our model on Vimeo-90k [28], where the video
sequences are of size 448x256 in RGB format. For training, we
randomly crop video frames to 256x256 and convert their color
space from RGB to YUV 4:2:0. We use Adam optimizer [29],
with the learning rate set to 1e−4.

For intra coding, we adopt a similar intra codec to [30]. We,
however, remove the context model and replace the Gaussian
Mixture model with a simple Gaussian to reduce the coding
runtime.

The evaluation of compression performance is done on
UVG [31], MCL-JVC [32], HEVC Class B [33] and ISCAS’22
Grand Challenge (GC) [25]. All the test sequences are in YUV
4:2:0 format. The intra-period defaults to 32. We follow [25]
to calculate the PSNR, with the bit rate measured in bits per
pixel (bpp).

The proposed method is compared against x265 [24] under
medium preset and low delay configuration, and HM [34]
with encoder randomaccess main configuration. The former
is used as anchor in reporting the BD-rate numbers, un-
less otherwise specified. Additionally, the learned baseline
method is [21], which is the top performer in ISCAS 2022
challenge [25]. Note that [21] supports P-frame coding only.
We remark that none of the existing learned B-frame codecs
supports YUV 4:2:0 content.

B. Experimental Results

Fig. 4 shows the rate-distortion comparison, with the BD-
rate numbers reported in Table II. Two observations are im-
mediate. First, our method outperforms x265 and the learned
codec in [21] by a large margin across all the datasets. This
is attributed to the use of more efficient B-frame coding.
Second, the proposed method is seen to be inferior to HM
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Fig. 4: Rate-distortion plots on UVG, MCL-JCV, HEVC Class B, and ISCAS’22 GC datasets in terms of PSNR-YUV.

Fig. 5: Illustration of the merged YUV coding. For brevity, the
hyperprior and the temporal prior are omitted from the figure.

under the random access configuration, which represents a
much stronger baseline method for B-frame coding. In contrast
to our comparison, the recent work [14] compares with HM
randomaccess in terms of PSNR-RGB with a short intra-period
of 8. We note that their experimental settings work favorably to
learned codecs. To evaluate the decoded picture quality in the
RGB domain, the pipeline of learned compression typically
involves the color space conversion from YUV 4:2:0 as the
input format to RGB for encoding and decoding. This is
to be compared with the setting of HM, namely, encoding
and decoding in YUV 4:2:0, followed by the color space
conversion to RGB as the output format. As such, learned
codecs are able to leverage end-to-end training to maximize the
decoded picture quality in RGB. To compare fairly with HM,
the ISCAS 2023 challenge requires that the quality evaluation
be done in YUV 4:2:0.

Table III presents the BD-rate comparison between our
conditional YUV coding scheme and its variants, includ-
ing (1) independent coding of the Y and UV components
with two separate conditional inter-frame codecs, (2) merged
coding of the Y and UV components by converting them
into their latent representations using convolutional layers for
concatenation and joint coding with one conditional inter-
frame codec (Fig. 5), (3) space-to-depth conversion of the Y
component for concatenation with the UV components and
their joint coding with one conditional inter-frame codec, and
(4) YUV 4:4:4 conversion from YUV 4:2:0 for joint coding
of the Y and UV components with one conditional inter-
frame codec. For fair comparison, these competing methods
have a similar model size. The BD-rate numbers are reported
for the Y, U, and V components separately. We observe that
our method outperforms all the other variants across different
color components, except for the independent case, where the
Y component shows slightly more rate saving (2.3%) at the

TABLE II: BD-rate comparison. The anchor is x265 in LDP
medium mode.

Method BD-rate (%) PSNR
UVG MCL-JCV HEVC-B ISCAS’22 GC

Ours -36.6 -26.6 -32.5 -33.4
Ho et al.’22 [21] -10.9 -4.5 7.7 24.9

HM [34] -57.0 -48.7 -53.8 -48.2

TABLE III: Ablation study on YUV coding. The dataset is
ISCAS’22 GC. The anchor is our proposed method.

YUV Coding BD-rate (%) PSNR
Y U V

Ours 0.0 0.0 0.0
Independent -2.3 4.0 17.5

Merged 15.1 81.3 82.3
Space-to-Depth 10.3 96.2 51.0

YUV444 4.8 57.4 53.9

TABLE IV: Ablation study on adaptive feature modulation.
The anchor is our method with fully functional modulation.

Content Coding BD-rate (%) PSNR
Adaptive Level UVG MCL-JCV HEVC-B ISCAS’22 GC

✓ ✓ 0.0 0.0 0.0 0.0
✓ 5.4 5.0 5.1 8.2

✓ 12.3 9.6 10.0 10.2
16.0 13.3 13.9 17.4

cost of much worse compression performance on the U and
V components. The gain of the Y component is related to
the bit allocation among these color components. Generally,
the independent case suffers from much worse compression
performance on the UV components.

Table IV presents an ablation study of our adaptive feature
modulation, with the aim of understanding the gain from the
two pieces of contextual information, i.e. the content feature
and the coding level C of the target frame (see Fig. 3). It is
seen that disabling either of them or both leads to considerable
rate inflation.

CONCLUSION

We propose a hierarchical B-frame coding scheme with
adaptive feature module for YUV 4:2:0 content. Our major
findings include: (1) separately coding the Y and UV compo-
nents is beneficial, (2) adapting the feature distributions to
the content information and the coding levels of B-frames
is crucial to content-adaptive variable-rate coding, and (3) in
terms of coding YUV 4:2:0 content, our learned codec still has
ample room for further improvement as compared to HM.
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