
1568 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

Intra Line Copy for HEVC Screen Content
Intra-Picture Prediction

Chun-Chi Chen and Wen-Hsiao Peng, Senior Member, IEEE

Abstract— This paper presents an intra line copy (ILC)
technique for HEVC screen content coding. It shares the
same origin with two other prominent techniques, intra string
copy (ISC) and intra block copy (IBC), in applying the notion of
string matching to intra-frame coding. This work combines their
merits in one scheme with both good compression performance
and high regularity. Specifically, it forms a prediction of a coding
block by decomposing it into horizontal or vertical lines of pixels
and performing line-based predictions based on previously coded
data from the current frame. To address the massive amounts
of search operations, our fast search algorithm first searches in
the horizontal and vertical directions, then checks line vector
candidates from spatial and temporal neighbors, and finally
references lines having an identical hash value as the prediction
line. The resulting line vectors are further predicted adaptively
to minimize their coding overhead. Extensive experiments based
on SCM-4.0, which includes IBC as an integral component, show
that ILC can provide an additional 4%–7% BD-rate savings
when the search area extends to the entire frame and 3%–4%
improvements with a restricted local search. Compared with ISC,
it achieves comparable performance without all its complications
from sequential string parsing.

Index Terms— Intra line copy (ILC), intra string copy (ISC),
nonsquare intra block copy (IBC), screen content coding (SCC).

I. INTRODUCTION

SCREEN content video is an emerging video type aris-
ing from the need to transmit screen visuals between

devices in the form of video for applications such as wireless
display, screen sharing/collaboration, and cloud/Web gaming.
Such content, usually composed of text, graphics, and nature
scene images, exhibits characteristics very different from those
of camera-captured content. For example, repeating patterns,
one-pixel-wide lines, and sharp edges are among its unique
features. These types of signals, which are uncommon in
camera-captured content, make conventional video coding
methods extremely inefficient for coding screen content [23].
In some cases, a simple lossless file/data compression scheme
can even achieve a bit-rate comparable to that of state-of-the-
art video codecs operating in lossy mode.

In a joint effort to enhance the capability of High Efficiency
Video Coding (HEVC) [20] in coding screen content, the
ISO/IEC Moving Picture Experts Group (MPEG) and the

Manuscript received October 18, 2015; revised January 2, 2016; accepted
January 28, 2016. Date of publication March 16, 2016; date of current version
June 30, 2017. This work was supported in part by the Ministry of Science and
Technology of Taiwan under Grant 104-2221-E-009-065-MY3, and in part by
the NOVATEK Fellowship. This paper was recommended by Associate Editor
Y. Wang.

The authors are with the Department of Computer Science,
National Chiao Tung University, Hsinchu 30010, Taiwan (e-mail:
cheerchen.cs98g@g2.nctu.edu.tw; wpeng@cs.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2016.2543098

ITU-T Video Coding Experts Group (VCEG) standardization
organizations have been working together to develop screen
content coding (SCC) extensions [1] since April 2014. During
the development of SCC, an intra-coding technique known as
pseudo 2D matching (P2M) [14], [15] was found particularly
effective in addressing the repeating patterns, and laid the
foundation for several other tools. Basically, it extends the
Sliding Window Lempel-Ziv (LZ) algorithm [4] for file/data
compression to image coding. The principle of the LZ algo-
rithm is string matching. To encode a sequence of source
symbols, it sequentially parses them into strings of variable
length and encodes each string with a pointer-length pair
indicating where an identical string can be found in the search
window and how long it is. In P2M, the symbol is an image
pixel and the sequence of symbols is formed by visiting
consecutive 2D blocks of pixels through horizontal or vertical
scanning. P2M owes its name to this 2D-to-1D conversion.
Although straightforward, it can already capture most of the
redundancy inherent in the repeating nature of screen content,
justifying its rather good performance.

There have been many improvements and variations around
this string matching notion. For example, the reconstruction-
based string matching [10], [11] turns the P2M into real
2D matching by allowing a 2D string to be freely searched
in a previously coded area within the same frame. By doing
so, the need for storing the image in 1D format is avoided.
Based on the same matching scheme, the intra string
copy (ISC) [16], [24] further relaxes the matching criterion
to allow nonperfect matching for lossy compression. Both
schemes require a 2D vector to indicate the position of a
matching string, in a way very much like identifying a refer-
ence block for motion-compensated prediction. This motivates
the intra block copy (IBC) [3], [7], [17], which turns string
matching into a regular block-based operation similar to block-
based motion estimation except for the use of the current
frame as reference. As such, IBC is more parallel friendly and
compatible with the mainstream codecs. It, however, lacks the
flexibility of ISC in determining the length of a string.

To strike a balance between flexibility and regularity, we
propose in this paper an intra line copy (ILC) technique.
Specifically, we look at a prediction block as being composed
of several (horizontal or vertical) lines of pixels, as depicted
in Fig. 1. From this viewpoint, it is seen that a variable-length
coding string in ISC can start and end at any position in a
line. The string can thus be as short as being only a portion
of a line, or as long as spanning across multiple lines (see
ISC in Fig. 1). All these lines, integral or fractional, share the
same displacement vector. By contrast, a prediction block in
IBC can be thought of as a fixed-length string with explicit end
points that groups together all its composing lines as a whole

1051-8215 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 21,2022 at 12:17:36 UTC from IEEE Xplore. Restrictions apply.

CHEN AND PENG: ILC FOR HEVC SCC 1569

Fig. 1. Partition structures of ILC, ISC, and IBC.

for matching (see IBC in Fig. 1). As an approach in between
these two extremes, our ILC tries to keep both the flexibility of
ISC for better compression performance and the regularity of
IBC for lower complexity. To this end, we consider each line
of pixels in a prediction block a basic matching unit. Due to
their uniform length and explicit end points, the matching for
these lines can run independently and in parallel. Furthermore,
by controlling their displacement vectors, ILC can produce a
prediction effect similar to that of ISC.

To address the dramatic increase in both search operations
and the number of vectors due to the line-based prediction,
we propose a fast line vector search algorithm and an adaptive
line vector prediction scheme. The former involves three major
search strategies: 1) searching horizontally and vertically in
a 1D manner; 2) checking vectors from spatially or temporally
neighboring blocks/lines; and 3) constructing hash tables to
quickly identify repeating patterns. The latter predicts a line
vector adaptively from those for the spatially neighboring
blocks/lines.

Extensive experiments show that on top of SCM-4.0 [22],
ILC can provide an additional 4%–7% BD-rate savings when
the search area extends to the entire frame and 3%–4%
improvements with local 4-CTU (coding tree unit) search.
Interestingly, ILC can largely compensate for the loss of IBC
from performing local search, making the combination of
ILC and IBC with local search an attractive alternative to full-
frame IBC. It is generally believed that full-frame search may
be prohibitive in practical applications. Compared with ISC,
ILC shows similar performance and runtime characteristics.
It is, however, able to reuse many existing components in
HEVC and has proved to be as effective as ISC without all
the complications from sequential parsing.

The rest of this paper is organized as follows. Section II
reviews ISC and IBC. Section III analyzes the block distrib-
ution of IBC, which motivates the design of ILC. Section IV
presents the line vector search algorithm and the coding
scheme. Section V evaluates the compression performance and
the complexity of ILC and provides comparisons with ISC.
Section VI concludes this paper with a summary of our
observations.

II. RELATED WORK
A. Intra String Copy

ISC [16], [24] is an intra-coding technique for SCC. It drew
much attention during the development of SCC [6] because
of its promising compression performance. Inspired by the
LZ coding, it forms an intra prediction of a coding unit (CU)1

through string matching. Specifically, the process includes the
following:

1CU is the basic coding unit in HEVC [20], which is similar to the notion of
macroblock in Advanced Video Coding, but is of variable size. For encoding,
each frame is divided uniformly into CTUs, the size of which is typically
64 × 64. Each CTU may be further divided into CUs by quadtree splitting.

Fig. 2. Illustration of ISC.

1) sequentially parsing the pixels in a CU in traversal order
into disjoint strings, each being the longest string of
pixels that can find a match in a search area within the
current frame;

2) signaling each string with a displacement vector indicat-
ing the beginning of the match and a length value repre-
senting the length of the match. In particular, ISC adopts
lossy matching; that is, any 2 pixels with their difference
smaller than a quantization parameters (QP)-dependent
threshold value are considered identical.

Another feature to be noted is that it requires no transform
and residual coding. Thus, it supports the so-called In-CU
reference [24], which allows a string to be copied from another
string that may overlap partially or fully the current CU. One
such string is indicated by the vector V0 in Fig. 2.

B. Intra Block Copy
IBC (Fig. 3) is conceptually a simplified version of ISC.

Instead of sequentially parsing pixels in a CU into strings
of variable length, it performs block-based string matching,
requiring that each string have the same shape and size of a
prediction unit (PU).2 Essentially, this makes the operation
of IBC almost identical to motion-compensated prediction,
except for using the current frame as reference. Since the
chance of having an exact match between two fix-sized blocks
is usually small, it signals the prediction residual. In particular,
the same residual coding as for inter prediction is used. Owing
to the block-based transform, for the prediction loop to be
closed only the reconstructed pixels outside of the current CU
can be referenced, and thus In-CU reference is prohibited.

Given its high compatibility with the existing state-of-the-art
coding architectures, IBC has been an integral part of the SCC
standard [6] since the 17th Joint Collaborative Team on Video
Coding (JCT-VC) meeting and is one of the most powerful
coding tools in this standard [21]. Currently, the search for
IBC can cover the coded area within the current frame partially
due to the wavefront parallel processing constraint [9], [19].
Therefore, IBC cannot access pixels in the CTUs (i.e., outside
of the area marked using thick dashed line in Fig. 3) next to
those lying along the up-right diagonal direction relative to the
current one in each CTU row above.

III. LINES AND NONSQUARE PARTITIONS

There are some interesting observations about IBC. Fig. 4
provides a breakdown analysis of the partition types of IBC

2PU is the basic prediction unit in HEVC, which can have a size of 2N×2N ,
2N × N , N × 2N , or N × N .

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 21,2022 at 12:17:36 UTC from IEEE Xplore. Restrictions apply.

1570 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

Fig. 3. Illustration of IBC.

Fig. 4. Distributions of IBC block sizes with QP = 37.

blocks in terms of their spatial coverage, namely, the per-
centage of pixels coded in individual types. The results are
based on the 1-second encoding of two standard sequences,
sc_desktop and MissionControlClip3,3 using SCM-4.0 [22]
under the all-intra (AI) configuration. In particular, we turn
off all fast algorithms4 for IBC, so that the results are not
biased.

From Fig. 4, IBC tends to work more efficiently with
smaller partitions and nonsquare structures. These phenomena
are, however, not seen in coding camera-captured content. The
reason may be explained by the unique signal characteristics
of screen content, which is usually full of sharp edges and
thin lines. For these types of signals, a slight mismatch in
phase between a prediction block and its reference could
easily incur considerable prediction errors. Choosing a smaller
block size seems a logical step toward improving prediction
accuracy. The fact that these sharp edges and thin lines are
often horizontally or vertically positioned partly justifies the
more frequent use of nonsquare partitions. These observations
motivate our radical attempt of introducing lines as basic pre-
diction units. Although the overhead for signaling vectors for
these extremely small partitions may seem to outweigh their
prediction benefit, our analysis in Section V-A surprisingly
indicates the opposite.

IV. INTRA LINE COPY

In this section, we present the notion of ILC, a fast algorithm
for line vector search, and a predictive line vector coding
scheme.

3The sc_desktop sequence is a purely screen content sequence, while
MissionControlClip3 is a mixture of screen content and camera-captured
content.

4Exhaustive and full-frame search is applied to all PU sizes and the 1D
search decision at CU level is disabled; both pixel gradient and R-D cost-based
algorithms for early termination are disabled; an early termination algorithm
for CU splitting based on IBC’s root cbf flag is also disabled.

Fig. 5. Illustration of ILC.

A. Concept of Operations

ILC extends the notion of IBC by allowing a PU to be
further divided uniformly into 1-pixel-thin horizontal or verti-
cal lines for prediction. According to the dividing orientation,
these lines have the same width or height as their parent
PU, and each has its own line vector indicating where in the
current frame it is predicted from. For example, as depicted
in Fig. 5, an N × 2N PU can be divided into lines of N × 1
when split rowwise or of 1 × 2N when split columnwise, and
these lines can be separately predicted from the reconstructed
region in the current frame (the gray area). As with IBC,
the residuals of ILC are transformed, quantized, and entropy
coded, so exact match is not a necessary requirement for lines.
Also, because of the block-based transform, none of the lines
within the current CU can reference pixels in the same CU
(i.e., prohibiting In-CU reference).

To determine the best mode for each PU, the sum of absolu-
tion prediction distortion and the bit overhead for the splitting
direction and line vectors are considered in the computation
of the PU-level R-D cost. The one with the lowest PU-level
R-D cost among vertical ILC, horizontal ILC, and IBC is
selected. Once each PU mode is determined and the associated
CU is finished encoding, the resulting CU-level R-D cost is
used for comparison with the other prediction modes.

B. Fast Algorithm for Line Vector Search

This section introduces a fast line vector search algorithm
for ILC. This algorithm comprises three major parts:

1) 1D search, which searches horizontally and vertically
within a given search area;

2) candidate-based search, which tests candidate vec-
tors derived from spatially or temporally neighboring
blocks/lines, and two most recently coded vectors;

3) hash-based search, which aims to test through a specific
set of reference lines whose source signals match that
of the prediction line.

1) 1D Search: Screen objects, such as tables, boxes, and
text, are usually aligned with respect to a grid-like structure
when displayed. For instance, letters in the text are often
aligned horizontally, and some other objects may be aligned
vertically. This salient feature of screen content suggests a
1D search along the horizontal and vertical axes.

To justify the effectiveness of this search pattern, Fig. 6(a)
shows how ILC’s line vectors are distributed in the vector
field. The results are obtained by conducting an exhaustive

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 21,2022 at 12:17:36 UTC from IEEE Xplore. Restrictions apply.

CHEN AND PENG: ILC FOR HEVC SCC 1571

Fig. 6. Line vector distributions of (a) sc_desktop and (b) sc_map.

TABLE I

PERCENTAGE OF 1D LINE VECTORS

TABLE II

PERCENTAGE OF LINE VECTORS MATCHING

THE EXHAUSTIVE SEARCH RESULTS

search on Class TGM and MC test sequences.5 As expected,
many line vectors have either a nonzero x-component or a
nonzero y-component, but not both. This indicates that they
are pointing in the horizontal or vertical direction. Table I
further analyzes such 1D line vectors in percentage terms
for TGM and MC sequences. As shown, about 50%–55% of
line vectors in these sequences are 1D. There are, however,
exceptions. One example is the sc_map sequence in Class
TGM, for which the line vector distribution as shown in
Fig. 6(b) is less concentrated along the horizontal and vertical
axes. Thus, more candidates must be checked.

2) Candidate-Based Search: Usually, spatial or temporal
neighboring lines/blocks have identical line/block vectors.
An effective yet simple strategy to speed up the search process
is to include their vectors as possible candidates. In some cases
where their vectors are not available for reference, we refer to
the two most recently coded block/line vectors. Similar ideas
have been adopted by SCM-4.0 [22] to accelerate the search
process for IBC [8].

Table II indicates that 70%–80% of the line vectors obtained
by these simple strategies along with the 1D search match
the results of the optimal exhaustive search. Comparing
Tables I and II, we see that the candidate-based scheme helps
identify another ∼20% of line vectors that are not detectable
by the 1D search pattern. In the next section, we shall proceed

5In [22], 26 video sequences are specified for the development of the SCC
standard [6]. They are grouped into four classes according to their content
types, with Class TGM comprising 14 sequences of pure screen content and
Class MC six sequences with a mixture of screen and camera-captured content.

Fig. 7. Input format to the CRC computation.

Fig. 8. Illustration of the hash-based search for ILC.

with a more complicated search method to approach the
remaining line vectors.

3) Hash-Based Search: Performing an exhaustive search
for block, string, or line matching can be time consuming,
particularly when the search range is extended to full frame.
To explore the potential of full-frame IBC, SCM-4.0 adopts
a hash-based search scheme [12], which trades hash tables
(memory space) for computational time to approach the per-
formance of the optimal exhaustive search. The same strategy
was also applied to inter prediction and ISC [16] during the
development of SCC for a fair experimental setup. By the
same token, this section presents our hash technique for ILC.

The principle of hash-based search for ILC is to confine the
search only to those candidate lines that have the same hash
value as the prediction line. The process relies on computing
a hash value for every line starting at every permissible search
location. This is achieved by computing the cyclic redundancy
check (CRC) [25] code. As shown in Fig. 7, we take as
input the cascaded binary representations of a line of pixels,
and compute its CRC code by returning the remainder after
this input number is divided by a predefined divisor. The
operation is applied in the source signal domain (instead of
the reconstruction signal domain used for 1D and candidate-
based search methods). After the hash code for every line is
collected, a hash table is used to store the locations of lines
sharing identical hash values, as delineated in Fig. 8. For
fast line matching, only those locations where the reference
lines have the same hash value as the prediction line will be
checked. In particular, when a hash value is computed with
respect to every line at every pixel position, this yields an
effect similar to performing full-frame ILC.

In computing the CRC code, the choice of the divisor
and the form of the input critically affect the search runtime
and quality. For example, the larger the divisor, the more
diversified values the remainder can take on. From Fig. 8, this
demands a hash table with more entries and on average fewer
candidate lines in each. The smaller candidate set implies a
reduced search runtime. By contrast, the input representation
can significantly influence the search quality. It is noticed that
the CRC code can easily detect any two lines that do not match
perfectly in the source domain. While this property is desirable

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 21,2022 at 12:17:36 UTC from IEEE Xplore. Restrictions apply.

1572 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

TABLE III

CODING PERFORMANCE AND RUNTIME COMPARISONS OF VARIOUS SEARCH METHODS

Fig. 9. Effects of the divisor size and the remaining MSB bits on (a)
compression performance and (b) encoding runtime.

for string matching schemes that hope to identify perfect
matching strings of variable length, it becomes superfluous
and detrimental to ILC, in which the approximate matching
of fixed-length lines is sought instead. Very often, the overly
stringent criterion leads to fewer candidates to be checked. To
address this issue, we change the line representation in Fig. 7,
rather than turning to other hash functions. Specifically, we
involve only the most significant bits (MSB) bits of pixel sam-
ples in the CRC calculation, allowing lines with the same MSB
bits in their samples to receive an identical CRC code. Here,
a uniform MSB truncation scheme is applied to every sample.

To see their combined effects, the encoding time ratios
and compression performance relative to SCM-4.0 [22] are
shown in Fig. 9(a) and (b), respectively, for different choices
of divisor size (n = 0, 4, . . . , 24 b) and the retained MSB bits
(m = 0, . . . , 8). In Fig. 9, each curve is plotted with a fixed m
over various choices of n. The two special cases with m = 0
or n = 0 correspond to the exhaustive search.6 From Fig. 9(a),
two observations can be made.

1) For a fixed m, the BD-rate saving drops when the divisor
size n increases.

2) For a fixed n, the same trend continues when more MSB
bits m are retained.

Both can be explained by our earlier predictions that fewer
candidates would be found when the divisor size increases or
when the line matching is made more exact. The same line of
reasoning can be followed to justify the much reduced search
runtime in either case, as illustrated in Fig. 9(b). In this paper,
we choose the combination of n = 16 and m = 4 for its

6Every n-b divisor actually has n+1 b in which the leading bit is 1. Setting
m equal to 0 means all the MSB bits of pixel samples are omitted from
computing the CRC code. In this special case, we simply set the CRC code
to zero.

good compression performance and negligible impact on the
encoding runtime.

The much reduced runtime of the hash-based search is
achieved at the expense of extra memory requirements for
storing hash tables. From Fig. 8, the size of such a table for
full-frame search can be estimated to be of the same order
of magnitude as for storing a reference frame. Essentially, we
need to keep the memory address of every line according to
their hash values. With the full-frame search, a line can start
at any pixel position. Therefore, the number of addresses to
be kept is the same as the frame resolution. The caveat is that
a separate table is needed for each type of line, e.g., 1 × 4,
4 × 1, 1 × 8, 8 × 1.

4) Performance and Combination Tests: Table III com-
pares different search methods in terms of their compression
performance on SCM-4.0 and provides results for several
combination tests. With the full-frame search range, it is
no surprise to see that the hash-based scheme achieves the
highest gains among all the three methods. However, the more
practical approach which combines the 1D and the candidate-
based search can reach even higher gains without the costly
hash tables. Interestingly, with all the three methods combined,
ILC can bring 4%–7% improvements over SCM-4.0 at a 20%
increase in encoding time, which gives a rough indication of its
full potential. When the search range is limited to 2-CTU, the
preferred setting for ILC, the 1D search dominates the gain
and encoding time among the others. We also see that the
full combination scheme approaches the performance of the
optimal exhaustive search with a much reduced encoding time.
Note that the exhaustive search results are not provided for the
full-frame case since the simulation cannot be completed. With
the above observations, we shall adopt the full combination
scheme for the rest of the experiments.

C. Predictive Line Vector Coding

Sending displacement vectors at the granularity of a 1-pixel-
thin line can be costly. In the worst case, where all the PUs in
a frame are of size 8 × 4 (respectively, 4 × 8) and are further
split into 1 × 4 (respectively, 4 × 1) lines for ILC, the number
of vectors required for signaling will be increased eightfold
compared with that of IBC. Apparently, how to encode these
line vectors is vital to the compression performance of ILC.

In this paper, we adopt predictive line vector coding. The
line vector difference is coded in the same way as the block
vector difference. Particularly, we evaluate three different

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 21,2022 at 12:17:36 UTC from IEEE Xplore. Restrictions apply.

CHEN AND PENG: ILC FOR HEVC SCC 1573

Fig. 10. Illustration of various strategies for the line vector prediction. (a) vA, vL . (b) #1. (c) #2. (d) #3.

TABLE IV

COMPARISON OF LINE VECTOR PREDICTION SCHEMES IN TERMS

OF THE AVERAGE NUMBER OF CODING BITS PER VECTOR

prediction schemes, which differ in their choice of line vector
predictors. The baseline for comparison is IBC’s block vector
prediction scheme, where as shown in Fig. 10(a), it predicts
every line vector in a PU from either vA or vL—the block/line
vector for the spatially neighboring PU, which is to the top
right or to the bottom left of the current PU. The choice
between the two predictors is made by rate-distortion opti-
mization and is signaled explicitly with a flag. Obviously, this
straightforward extension may not be optimized for the line
vector prediction. For instance, in predicting v2, the previously
coded v1 could be a better prediction reference than vA in the
rowwise splitting or vL in the columnwise splitting, as v1 is
spatially closer to v2 and may thus correlate more strongly
with v2. As such, in our first test (Method #1), we replace
vA or vL with the previously coded line vector vi−1 in forming
the predictor set for all line vectors vi , except v1 for which its
predictor set remains the same as that for IBC. Our second
test (Method #2) further saves the overhead for signaling
predictors by keeping for each line only one predictor, as
illustrated in Fig. 10(c). The last test (Method #3) is a hybrid
of Methods #1 and #2, in which the first line in coding order
retains the same predictor set as IBC while the others simply
refer to the previously coded line vector.

Table IV presents the coding results associated with these
prediction schemes. We re-encode the line vectors gen-
erated based on the baseline scheme (vA and vL) using
Methods #1–#3. Each number in Table IV indicates the
average number of bits consumed on coding a line vector.
As shown, all the three methods perform better than the

TABLE V

COMPRESSION PERFORMANCE COMPARISON OF

LINE VECTOR PREDICTION SCHEMES

baseline, the IBC’s block vector prediction scheme. Moreover,
it is seen that Method #2 consistently outperforms #1, which
can be attributed to the frequent occurrence of choosing
previously coded line vector vi−1 for prediction. The cost of
having to signal the choice does not seem to be necessary
for each line vector. In fact, such overhead can justify
its compression benefit only when it comes to the coding
of v1, as can be observed by comparing the results of
Methods #2 and #3. When integrated into SCM-4.0, all the
three methods show about 1% BD-rate savings relative to
the baseline method (see Table V) under the AI condition.
As expected, Method #3 achieves the highest gain. We thus
adopt Method #3 in all the experiments that follow.

V. EXPERIMENTAL RESULTS

This section characterizes the compression performance
and the complexity of ILC, and compares its perfor-
mance/complexity characteristics with ISC. We begin with
providing performance results to justify the choice of lines as
additional nonsquare prediction units, which is a continuation
of our earlier discussion in Section III. We then present
performance comparisons between ILC and ISC with the
search range configurations, including 2-CTU, 4-CTU and full
frame.7 After that, we analyze the impacts of ILC and ISC

7The N-CTU search range comprises the reconstructed region of one current
CTU plus a (N − 1)*64-pixel-wide region to the left, where N is a positive
integer; the full-frame search range allows a line or a string to be copied from
any position sitting in the reconstructed region of the current frame.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 21,2022 at 12:17:36 UTC from IEEE Xplore. Restrictions apply.

1574 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

on the decoding complexity. Finally, we discuss IBC with a
restricted search range and its combination with ILC.

For experiments, ILC is implemented with SCM-4.0 [22].
To switch it on and off adaptively, one flag is sent for each PU
when the reference frame index indicates the current frame
as reference. Once this flag is switched on, one additional
flag is sent to indicate the splitting direction (i.e., vertical or
horizontal) for lines. All the remaining syntax elements are
aligned with those of IBC. For ISC, its software package is
also built on top of SCM-4.0 and is provided in [16]. All
the experiments are conducted following the common test
conditions [22] for developing SCC extensions [6], in which
each simulation batch involves the encoding and decoding of
26 test sequences in RGB and YUV formats, at five QP values
(lossless, 22, 27, 32, and 37), and under three encoder settings
[All Intra (AI), Random Access (RA) and Low Delay B (LB)].
These video sequences have picture resolutions ranging from
1280 × 720 to 2560 × 1440. According to their content types,
they are categorized into four classes—Text and Graphics with
Motion (TGMRGB and TGMYUV), Mixed Content (MCRGB
and MCYUV), Animation Content (ACRGB and ACYUV), and
Camera Content (CCRGB and CCYUV). Class TGM is pure
screen content with computer-generated graphics and text only,
whereas Class MC is a mixture of screen content and camera-
captured content. Classes CC and AC are typical camera-
captured content and computer animation, respectively.
In particular, results for these two classes are omitted, because
none of the methods tested offers any meaningful gain. For
reporting compression performance improvements, we adopt
the BD-rate [2] saving for lossy coding and the overall bit-
rate reduction for lossless coding. In both metrics, negative
numbers indicate rate savings/reductions.

A. Revisit of Lines and Nonsquare Partitions

In Section III, we have seen that IBC works most effectively
with small block sizes and that nonsquare structures are
particularly beneficial to IBC. Our discussion, however, is
restricted to the partition structures and sizes supported by
the current draft standard specification [6]. In this section,
we remove such limitation to provide justification for ILC.
Specifically, we allow IBC to go below the minimal allowed
partition sizes in SCM-4.0, i.e., 8x4/4x8, and under which
case, test both square and nonsquare partitions of various sizes
to see which of them performs the best.

Fig. 11 depicts all the partitions tested. They are imple-
mented in such a way that one additional flag is sent for each
PU to indicate whether it should be further split. The resulting
partitions are thus referred to as sub-PUs. Table VI summarizes
the BD-rate savings relative to SCM-4.0 for every sub-PU type
when they are enabled separately. The results are based on
1-second encodings with 2-CTU search range for all sub-PUs.
Comparing 4x4 and 8x2/2x8 sub-PU types—both when
enabled having the same number (3) of sub-PUs in a CU—we
again observe that nonsquare partitions bring more compres-
sion benefit. Interestingly, the highest gain is achieved when
the nonsquare partition degenerates into a line, justifying the
use of ILC. A careful examination of Table VI reveals that
the 4x1/1x4 line performs slightly better than 8x1/1x8 for

Fig. 11. Examples of square (4×4) and nonsquare (8×2/2×8 and 4×1/1×4)
partitions.

TABLE VI

COMPRESSION PERFORMANCE COMPARISON OF PARTITION STRUCTURES

lossless coding (0%–0.4%) and worse (0.2%–0.4%) for lossy
coding, which agrees with the general observation that smaller
partitions usually provide a better R-D tradeoff at high rates.

In Table VII, we present the results for several combinations
of nonsquare sub-PUs, aiming to identify a minimum set
of sub-PUs that can achieve the highest gain. Starting from
combining small sub-PUs (see Part I), it is seen that the
combination of 4x1/8x1 achieves the best performance among
the others, involving at least one sub-PU type that is not a
line. On top of 4x/8x1, additionally applying line splitting to
16x8/8x PUs, which yields 16x1/1x16 lines, can bring up to
0.5% more gain. This approach is also seen to be performing
better than adding 16x2/2x16 or 16x4/4x6 partitions (see Part
II), although the differences between these three are rather
minor. Last, additional sub-PU splitting at even larger PU sizes
shows nearly no extra gain (see Part III). In view of these, we
shall adopt only 4x1/1x4, 8x1/1x8, and 16x1/1x16 lines for
the rest of our experiments.

B. Compression Performance

This section analyzes the performance of ILC by showing
its rate savings over SCM-4.0 and providing comparisons with
ISC [16]. The results are summarized in Table VIII.

Overall, they perform close to each other in the lossy cases.
ILC shows slightly better results in MC sequences, while ISC
is better performing in TGM sequences. They both benefit
similarly from the increase in search range. Under the AI
condition, enlarging the search range from 2-CTU to 4-CTU
can provide, on average, ∼1% more rate savings across all

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 21,2022 at 12:17:36 UTC from IEEE Xplore. Restrictions apply.

CHEN AND PENG: ILC FOR HEVC SCC 1575

TABLE VII

COMPRESSION PERFORMANCE COMPARISON OF VARIOUS COMBINATIONS OF NONSQUARE PARTITIONS

TABLE VIII

COMPRESSION PERFORMANCE AND RUNTIME COMPARISONS OF ILC AND ISC

sequences, and extending further from 4-CTU to full frame
brings another 2% gain, yet at the cost of an almost 10%
increase in encoding time. For the RA and LB conditions,
the gains are relatively smaller since the inter-prediction tools
can dominate. A side experiment indicates that increasing the
search range not only allows more candidates to be searched
but also increases the chance of longer lines/strings being
selected, which agrees with the theoretical prediction [4].

In the lossy cases, it is interesting to note that ISC outper-
forms ILC in TGM sequences by a significant margin. This
has to do with two of its unique features, namely, the flexibility
of choosing short strings and the support of In-CU reference,
as was pointed out in [13]. It was found that the percentage of
short strings (of length 4 pixels, the minimum line size in ILC)
increases dramatically when ISC is operated at higher rates or
in lossless mode. Intuitively, short strings (small partitions)
have an edge over long strings (large partitions) in providing
better prediction at high rates. Moreover, when the string
becomes shorter, it is more likely to find a match nearby—that
is, there is no need to look further back in the buffer. Its ability
to support In-CU reference happens to provide the required
function, allowing a string to be copied immediately from
those that have just been coded, even when they are all within
the same CU. It is, however, noticed that both short strings
and In-CU reference have negative impacts on complexity.
This will become more apparent in Section V-C. The results in
Table IX show that turning off either of them or both will cause
the performance of ISC to drop considerably, particularly in
TGM sequences and in lossless conditions, where ISC used to
deliver a much better performance.

C. Memory Access Bandwidth
One major source of complexity for implementing tools like

motion-compensated prediction and IBC is the need to access
reference pixels in the previously decoded pictures or the
current picture, which is usually stored in the external memory
due to the considerable costs needed for buffering them on a
chip or with cache. The bandwidth consumed for the required
memory access can thus serve as an indication of complexity,
which reflects the practicality of a tool in terms of its memory
access characteristics. Here, we follow the practices of the
JCT-VC committee to characterize the runtime [18] and per-
pixel memory access bandwidth [5] for ILC and ISC.

1) Runtime Behavior Analysis: This section compares the
runtime memory access bandwidths of ISC and ILC at the
decoder to provide a rough indication of their complex-
ity characteristics. The software [18] that was used by the
JCT-VC committee to measure the runtime memory bandwidth
is integrated into ILC and ISC. As shown in Fig. 12, a memory
model, which is assumed in the software, divides a reference
frame into equal-sized nonoverlapping memory blocks of size
m × n (e.g., 4 × 2), and then these blocks are stored in raster
order into a physical memory at consecutive addresses. Each
of such blocks serves as the basic unit for data access, with
each read from or write to the memory further restricted by
the memory alignment and burst size. The former specifies the
minimum addressable unit while the latter refers to the data
size per memory access. Apparently, the memory configuration
has a critical impact on the efficiency of data access. For
example, in Fig. 12, to retrieve the reference block of size
M × N (e.g., 2 × 4), a total of 12 memory blocks have to be

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 21,2022 at 12:17:36 UTC from IEEE Xplore. Restrictions apply.

1576 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

TABLE IX

COMPRESSION PERFORMANCE COMPARISON OF ILC AND ISC WITH RESTRICTIONS ON STRING LENGTH AND/OR IN-CU REFERENCE

TABLE X

RUNTIME MEMORY ACCESS BANDWIDTH OF ILC AND ISC

Fig. 12. Illustration of fetching a reference block from a physical memory.

fetched; that is, more data than needed have to be retrieved due
to the many constraints imposed by the underlying memory
configuration. It is also worth pointing out that the amount
of overhead incurred depends on the location of the reference
block. As such, interpretation of the results must take into
account the dynamics of these factors.

Table X compares ILC and ISC in terms of the increase
(measured in percentage) in the runtime memory access
bandwidth at the decoder when they are integrated into the
SCM-4.0 software as an additional coding mode. The results
are provided for four different memory block sizes, 4 × 2,
4 × 4, 8 × 2, and 8 × 4. For the 8 × 4 case, additional results
are provided by assuming the presence of a 48-KB four-way

set associative cache, which is shared by IBC, ILC/ISC, and
other inter modes that involve motion-compensated prediction.
As shown, the incorporation of ILC or ISC leads to an increase
in the memory access bandwidth in most test cases. The
increase is more significant under the AI condition than under
the RA and LB conditions, in which inter modes are observed
to dominate the bandwidth consumption. Further inspection of
TABLE X reveals that ILC incurs slightly higher bandwidth
penalties than ISC in the lossy cases, whereas ISC consumes
more than ILC in the lossless counterparts. This can be
attributed to the more frequent use of shorter strings by ISC at
higher rates. In general, the smaller the data access granularity,
the higher the incurred overhead. The same argument also
explains the relatively higher bandwidth consumption of both
ILC and ISC in the lossless conditions, where the mode
decision process tends to choose shorter lines or strings to
give a more accurate prediction. In particular, ISC exhibits
a larger degree of variability in the bandwidth consumption.
This may arise from its flexibility of being able to choose
from a wide range of string lengths. Sometimes extremely long
strings can occur, which could lead to reductions in bandwidth
(as evidenced by the negative values in Table X) since longer
strings usually have lower access overhead and thus make it
more efficient to access the memory. Another point to be noted
is that a larger memory block size has a detrimental effect on
the access of lines or strings. Essentially, more unnecessary
data would have to be accessed together with the requested line

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 21,2022 at 12:17:36 UTC from IEEE Xplore. Restrictions apply.

CHEN AND PENG: ILC FOR HEVC SCC 1577

Fig. 13. Illustration of the worst case memory access for IBC, ISC,
and ILC.

or string of pixels due to the mismatch between the line/string
and block structures and the requirement to access the data
in the basic unit of a memory block. The last observation is
that when the cache memory is present, ISC incurs higher
bandwidth penalties than ILC, particularly in the lossy cases.

2) Worst Case Analysis: Although the change of runtime
memory access bandwidth helps characterize the impact of
ILC and ISC on the decoder’s complexity, the results can be
misleading as they depend highly on the encoding algorithm.
For example, a fine-tuning on how often they are enabled, a
different restriction on how long a line/string can be, or a slight
change in where lines/strings are copied from could easily
alter the conclusion. For encoding-independent measurement,
we provide results based on another complexity measure—
per-pixel memory access bandwidth, termed P-number, which
is computed by

P =
⌈m−1+M−1

m

⌉ × ⌈ n−1+N−1
n

⌉ × m × n

M × N
(1)

where M × N and m × n represent the target block size and
the memory block size, respectively [5].

This P-number metric, also introduced by the JCT-VC
committee for their core experiments, reports the ratio of the
data size associated with the memory blocks that need to
be read from the memory in order to obtain the requested
line/string/block to the data size of the line/string/block itself.
That is, it serves as an indication of how much read overhead
will be incurred for a given memory block pattern and size.8

In particular, such ratio is computed for the worst case
scenario, in which its value attains the maximum. Usually,
the worst case occurs when the requested line/string/block is
of its minimum size and located at some position where it
spans across the maximum number of memory blocks. Fig. 13
illustrates the worst case scenarios for IBC, ISC, and ILC,
respectively, where it is assumed that IBC has a minimum
block size of 4 × 8, ISC a minimum string length of 1, and
ILC a minimum line size of 4 (which can be a 4×1 horizontal
or a 1 × 4 vertical line).

Table XI compares their P-numbers against that of Inter
8×8 bi-prediction—the worst case of all inter modes in terms
of memory access characteristics—for 4 ×2, 4 ×4, 8 ×2, and
8 × 4 memory blocks, respectively. It is generally desirable to
have a P-number lower than that of Inter 8 × 8 bi-prediction,

8Writing data to memory is usually less of a problem than reading them
from memory as the former does not have the complication of possibly being
random in data access pattern as is often the case with the latter.

TABLE XI

P-NUMBERS OF INTER PREDICTION, IBC, ISC, AND ILC

especially when the existing decoder designs are to be reused
with minimum changes. Note that the P-number calculation
for Inter 8 × 8 bi-prediction is slightly different from (1),
mainly to accommodate the overhead from subpel prediction.9

From Table XI, we see that IBC has consistently lower
P-numbers than Inter 8 × 8 despite its smaller block
size, i.e., 4 × 8. This is because IBC is essentially a
uniprediction technique and it does not support subpel
prediction. It is also observed that ISC has signifi-
cantly larger P-numbers than the others due to the
extremely small 1-pixel-long string in the worst case.
By contrast, the P-numbers of ILC are somewhere in between
those of IBC and ISC, with the 1 × 4 vertical line being
worse than the 4 × 1 horizontal line. When compared with
Inter 8 × 8 s, the P-number of ILC, vertical or horizontal,
is either smaller or slightly larger depending on the memory
block size. This, however, does not imply that the increase
in memory access burden after incorporating ILC into the
existing decoders would be moderate. After all, the above
analysis does not include factors like memory alignment and
burst, which would further complicate the identification of the
worst case.

D. IBC With Restricted Search Range

So far, full-frame search for IBC has been taken for
granted and has been implemented in SCM-4.0 as the baseline
for comparison. There, however, has been much debate on
whether full-frame IBC is really practical. Major concerns
include the extra buffer for storing an unfiltered picture, the
increase in memory access bandwidth for writing out this
picture, the usually stringent low-delay requirements, and
the limited computing power of the encoder. This section
provides information on how another design alternative, which
combines IBC and ILC with 4-CTU local search, compares
against full-frame IBC and sees how ILC may compensate for
the loss of IBC due to local search. It is generally believed
that four CTUs may be small enough to be kept on-chip, so
that the data access for IBC and ILC need not go off-chip.

For this experiment, we take SCM-4.0 with IBC disabled
as the anchor. Table XII summarizes the rate savings over this
stripped anchor when we separately enable full-frame IBC,
4-CTU IBC, and the combination of 4-CTU IBC and
4-CTU ILC. We see that full-frame IBC does bring consid-
erable compression benefit, showing 20%–30% rate savings.
However, it is also observed that IBC with 4-CTU local search
already captures one-half or two-thirds of the gains. On top

9 P =
⌈

m−1+M−1
m

⌉
×
⌈

n−1+N−1
n

⌉
×m×n

M×N , where L denotes the length of the
interpolation filter.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 21,2022 at 12:17:36 UTC from IEEE Xplore. Restrictions apply.

1578 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 7, JULY 2017

TABLE XII

COMPRESSION PERFORMANCE COMPARISON OF FULL-FRAME IBC, 4-CTU IBC, AND 4-CTU IBC PLUS ILC

of that, applying ILC achieves 3%–4% more savings, with the
performance gap between full-frame and 4-CTU local search
reduced to 3%–7% in lossy cases and 1%–6% in lossless cases.
The gap would become even smaller in real applications, since
it may not be possible to approach the full potential of full-
frame IBC by adopting the costly hash-based search algorithm
in SCM-4.0. Therefore, the combination of IBC and ILC
with local search may be worth considering, particularly for
low-delay and real-time applications.

VI. CONCLUSION

This paper proposed an ILC technique that adopts 1-pixel-
thin lines as a basic matching unit for prediction. Essentially,
it extends the notion of IBC by allowing a PU to be divided
uniformly into lines. We first examined the partition types
of IBC blocks in terms of their spatial coverage and showed
that IBC tends to be enabled more with smaller partitions and
nonsquare structures. This observation was then elaborated by
empirical analyses, which reveal the superiority of lines over
other nonsquare partitions, resulting in a line-based prediction.
With such a uniform structure, lines can run independently and
in parallel. Due to the increased amounts of search operation
and line vectors, a fast line vector search algorithm and an
adaptive line vector prediction scheme were proposed, which
achieved a much reduced encoding time and a comparable
compression performance to that of the optimal exhaustive
search. Experimental results justify the effectiveness of the
proposed prediction scheme. These results also reveal that
ILC not only achieves comparable coding performance to ISC
but also presents more compatible with IBC because it can
reuse both the syntax design and decoding process of IBC
for pixel copying. Thus, it would be more natural to combine
ILC with IBC. When taking the compression performance and
the memory access bandwidth tradeoffs into account, such
a combination with local search may be considered more
attractive than full-frame IBC, where full-frame search is
generally considered less practical.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers
and Associate Editor Y. Wang for their invaluable comments
that helped us to improve the quality of this paper, and the
Ministry of Science and NOVATEK, Taiwan, for their support
of funding the work.

REFERENCES

[1] “Press release of the 108th meeting in Valencia, Spain,”
document MPEG-W14311, ISO/IEC JTC1/SC29/WG11, Apr. 2014.

[2] G. Bjontegaard, “Improvements of the BD-PSNR model,”
document VCEG-AI11, ITU-T SG16 Q6, Jul. 2008.

[3] T.-S. Chang et al., “RCE3: Results of subtest D.2 on Nx2N/2NxN/NxN
intra block copy,” document JCTVC-P0180, ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, Jan. 2014.

[4] T. M. Cover and J. A. Thomas, “Elements of Information Theory,”
2nd ed. New York, NY, USA: Wiley, 2006.

[5] E. Francois, A. Tabatabai, and E. Alshina, “BoG report: Methodoly
for evaluating complexity of combined and residual prediction
methods in SHVC,” document JCTVC-L0440, ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, Jan. 2013.

[6] R. Joshi, S. Liu, J. Xu, and Y. Ye, “HEVC screen content cod-
ing draft text 3,” document JCTVC-T1005, ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, Feb. 2015.

[7] D.-K. Kwon and M. Budagavi, “Fast intra block copy (IntraBC) search
for HEVC screen content coding,” in Proc. IEEE Int. Symp. Circuits
Syst., Jun. 2014, pp. 9–12.

[8] G. Laroche, T. Poirier, C. Gisquet, and P. Onno, “Non-CE2: IBC encoder
improvements for SCM2.0,” document JCTVC-S0065, ITU-T SG16
WP3 and ISO/IEC JTC1/SC29/WG11, Oct. 2014.

[9] B. Li and J. Xu, “On WPP with palette mode and intra
BC mode,” document JCTVC-S0088, ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, Oct. 2014.

[10] B. Li and J. Xu, “SCCE4: Results of test 3.1,” document JCTVC-R0098,
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Jul. 2014.

[11] B. Li, J. Xu, and F. Wu, “1-D dictionary mode for screen content cod-
ing,” in Proc. IEEE Int. Conf. Vis. Commun. Image Process., Dec. 2014,
pp. 189–192.

[12] B. Li, J. Xu, F. Wu, X. Guo, and G. J. Sullivan, “Description
of screen content ccoding technology proposal by Microsoft,”
document JCTVC-Q0035, ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, Apr. 2014.

[13] R.-L. Liao, C.-C. Chen, and W.-H. Peng, “On comparison of intra line
copy and intra string copy for HEVC screen content coding,” in Proc.
IEEE Int. Conf. Vis. Commun. Image Process., Dec. 2015.

[14] T. Lin, X. Chen, and S. Wang, “Pseudo-2D-matching based dual-
coder architecture for screen contents coding,” in Proc. IEEE Int. Conf.
Multimedia Expo Workshops, Jul. 2013, pp. 1–4.

[15] T. Lin, P. Zhang, S. Wang, K. Zhou, and X. Chen, “Mixed chroma
sampling-rate High Efficiency Video Coding for full-chroma screen
content,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 1,
pp. 173–185, Jan. 2013.

[16] T. Lin, K. Zhou, L. Zhao, and X. Chen, “Non-CE1: Enhancement
to palette coding by palette with pixel copy (PPC) coding,”
document JCTVC-U0116, ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, Jun. 2015.

[17] C. Pang, J. Sole, L. Guo, M. Karczewicz, and R. Joshi, “Non-RCE3:
Intra motion compensation with 2-D MVs,” document JCTVC-N0256,
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Jul. 2013.

[18] C. Pang, J. Sole, and M. Karczewicz, “SCCE1: Test 1.1—Intra
block copy with different search areas,” document JCTVC-R0184,
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Jul. 2014.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 21,2022 at 12:17:36 UTC from IEEE Xplore. Restrictions apply.

CHEN AND PENG: ILC FOR HEVC SCC 1579

[19] K. Rapaka, V. Seregin, C. Pang, and M. Karczewicz, “On parallel
processing capability of intra block copy,” document JCTVC-S0220,
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Oct. 2014.

[20] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[21] J. Xu, R. Joshi, and R. A. Cohen, “Overview of the emerging HEVC
screen content coding extension,” IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 1, pp. 50–62, Jan. 2016.

[22] H. Yu, R. Cohen, K. Rapaka, and J. Xu, “Common test conditions for
screen content coding,” document JCTVC-T1015, ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11, Feb. 2015.

[23] H. Yu, X. Wang, and J. Ye, “AHG8: More investigation on screen
content coding,” document JCTVC-M0320, ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, Apr. 2013.

[24] L. Zhao, K. Zhou, S. Wang, and T. Lin, “Non-CE3: Improvement on
intra string copy,” document JCTVC-T0139, ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, Feb. 2015.

[25] F. Zou, Y. Chen, M. Karczewicz, and V. Seregin, “Hash based intra
string copy for HEVC based screen content coding,” in Proc. IEEE Int.
Conf. Multimedia Expo Workshops, Jun./Jul. 2015, pp. 1–4.

Chun-Chi Chen received the B.S. degree in com-
puter science from National Central University,
Taoyuan, Taiwan, in 2007, and the M.S. degree in
multimedia engineering from National Chiao Tung
University, Hsinchu, Taiwan, in 2009, where he is
currently working toward the Ph.D. degree with the
Institute of Computer Science and Engineering.

He has actively participated in the ISO/IEC MPEG
and ITU-T VCEG standardization organization since
2011. He has been an active contributor to the High
Efficiency Video Coding standard and its Screen

Content Coding extension. In these standardization bodies, he has coordinated
several core experiments on intra line copy and string copy techniques. He
is an Intern with InterDigital Communications LLC, San Diego, CA, USA.
He has authored or co-authored over 50 technical papers and video standard
contributions. His research interests include high-efficiency image/video com-
pression and screen content coding.

Wen-Hsiao Peng (SM’13) received the B.S., M.S.,
and Ph.D. degrees from National Chiao Tung
University (NCTU), Hsinchu, Taiwan, in 1997,
1999, and 2005, respectively, all in electronics
engineering.

He was with the Intel Microprocessor Research
Laboratory, Santa Clara, CA, USA, from 2000 to
2001, where he was involved in the International
Organization for Standardization (ISO) Moving Pic-
ture Expert Group (MPEG)-4 fine granularity scala-
bility and demonstrated its application in 3-D peer-

to-peer video conferencing. Since 2003, he has actively participated in the
ISO MPEG digital video coding standardization process and contributed to
the development of the High Efficiency Video Coding (HEVC) standard and
MPEG-4 Part 10 Advanced Video Coding Amd.3 Scalable Video Coding
standard. His research group at NCTU is one of the few university teams
around the world that participated in the Call-for-Proposals on HEVC and its
Screen Content Coding extension. He is currently an Associate Professor with
the Computer Science Department, NCTU. He is a Visiting Scholar with the
IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA. He
has authored over 60 technical papers in the field of video/image processing
and communications and over 50 standard contributions. His research interests
include HEVC, screen content coding, visual search and information retrieval,
and machine learning.

Dr. Peng is a Technical Committee Member of the Visual Signal Processing
and Communications and Multimedia Systems and Application tracks of the
IEEE Circuits and Systems Society. He organized several special sessions
on HEVC and related topics in prestigious conferences and was a Technical
Program Co-Chair for the Conference on Visual Communications and Image
Processing in 2011. More recently, he served as a Guest Editor for a Special
Issue on Screen Content Video Coding and Applications in IEEE JOURNAL

ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on December 21,2022 at 12:17:36 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

