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Abstract—To address the ill-posed nature of image restoration
tasks, recent research efforts have been focused on integrating
conditional generative models, such as conditional variational
autoencoders (CVAE). However, how to condition the autoencoder
to maximize the conditional evidence lower bound remains an
open issue, particularly for the restoration tasks. Inspired by the
rapid advancements in CVAE-based video compression, we make
the first attempt to adapt a conditional video compressor for
image restoration. In doing so, we have the low-quality image to
be enhanced, which plays the same role as the reference frame for
conditional video coding. Our scheme applies scalar quantization
in training the autoencoder, circumventing the difficulties of
training a large-size codebook as with prior works that adopt
vector-quantized VAE (VQ-VAE). Moreover, it trains end-to-end
a fully conditioned autoencoder, including a conditional encoder, a
conditional decoder, and a conditional prior network, to maximize
the conditional evidence lower bound. Extensive experiments
confirm the superiority of our scheme on denoising and deblurring
tasks.

Index Terms—image restoration, learning-based video compres-
sion, image deblurring, image denoising

I. INTRODUCTION

Image restoration involves repairing and/or enhancing im-
ages to restore their original quality. Deep learning-based
approaches with convolutional neural networks [5]–[8] have
surpassed conventional restoration methods. Emerging tech-
niques, as discussed in [9], employ vision transformers (ViTs)
to address the rather limited receptive field of CNNs. Notably,
Zamir et al. [10] proposed Restormer, which combines a
UNet structure with enhanced Transformer blocks for improved
feature aggregation and transformation. These non-generative
methods extract features from low-quality input images and
restore their quality by decoding the refined features.

However, the restoration task is often an ill-posed problem;
that is, the mapping from the original, high-quality input into its
distorted version is multiple-to-one. The non-generative meth-
ods, which inherently assume that such a mapping is one-to-
one, fail to formulate the problem properly. Recent research has
increasingly been focused on utilizing conditional generative
models, like conditional GANs, diffusion models [11], and VQ-
VAEs [4], to address the restoration task.

Inspired by the recent breakthrough in conditional video
coding, we present in this paper the first attempt to explore
its potential for image restoration tasks. Specifically, we adopt
a conditional variational auto-encoder-based (CVAE-based)
compression backbone [12] for our image restoration tasks,
adapting its design to suit our needs.

Fig. 1. Comparison of CVAE-based image restoration schemes and our
proposed method: (a) VarSR [1], (b) VID [2], (c) VDVAE-SR [3], (d) LAR-
SR [4], (e) Ours (TCM-based) and (f) Ours (Restormer-based). The red arrows
in each sub-figure represent the evaluation of the KL divergence.

Conditional variational auto-encoders (CVAEs) have been
used in various image restoration tasks [1]–[4], [13]–[16].
The training of most CVAEs is to maximize the conditional
evidence lower bound:

L(IH , IL, θ, ϕ) = logEqϕ(y|IH ,IL) log pθ(IH |y, IL)
−KL(qϕ(yIH , IL)||pθ(y|IL)),

(1)

where IH denotes a high-quality image, IL represents a low-
quality image. pθ(y|IL) indicates the prior distribution modeled
by the prior encoder EL. Conversely, qϕ(y|IL, IH) represents
the posterior distribution modeled by the encoder EH , which
takes IH as input and conditions the latent generation on
IL. Lastly, pθ(IH |y, IL) denotes the decoding distribution
implemented by the decoder D. The decoding of the latent
y is likewise conditioned on IL. At training time, y is sampled
from qϕ(y|IL, IH), whereas at test time, it is sampled from the
conditional prior pθ(y|IL).



The existing CVAE-based restoration models differ in how
these components are implemented. For example, Hyun et
al. [1] introduced VarSR-Net, a CVAE-based super-resolution
network. As shown in Fig. 1(a), the lack of conditioning the
posterior qϕ(y|IH) on IL impedes the minimization of the
KL divergence between the posterior and the conditional prior
pθ(y|IL). This issue is not seen in VID [2] (Fig. 1(b)), as it
generates a condition signal (a density estimation map to avoid
over and under deraining) from IL, which is shared across the
encoder EH , prior encoder EL, and decoder D for the de-
raining task. Furthermore, Chira et al. [3] proposed VDVAE-
SR, a hierarchical CVAE with K layers of latents conditionally
dependent on each other (Fig. 1(c)), offering a prior and a
posterior of the form pθ(y|IL) =

∏K
j=1 pθ(yj |y<j , IL) and

qϕ(y|IH , IL) =
∏K

j=1 qϕ(yj |y<j , IH , IL), respectively. Their
CVAE with layers of latent is shown to improve the model
expressiveness. Recently, Guo et al. [4] proposed a VQ-VAE-
based model, known as LAR-SR (Fig. 1(d)). One issue of the
VQ-VAE model is how to determine the codebook size. As
shown in [17], too large a codebook can have many codewords
not used at all. Another issue is that their two-stage training
procedure–i.e. the reconstruction and KL divergence losses in
Eq. (1) are applied sequentially and separately–is not ideal
in terms of maximizing the evidence lower bound. In this
paper, we explore the CVAE architecture (Fig. 1(e)) of a
conditional video codec, termed DCVC-TCM [12], for our
image restoration tasks. DCVC-TCM is a powerful CVAE
designed as a fully conditional VAE, with conditions applied
in EH , EL, D. We also make a slight adjustment, turning it
into a hierarchical CVAE (Fig. 1(e)), with prior and poste-
rior distributions computed in the deepest and middle layers,
where the second-level distribution is conditioned on the latent
representation of the preceding layer. Notably, compared to
other methods where the posterior qϕ follows a Gaussian
distribution, our qϕ follows a uniform distribution, consistent
with the original design in video compression. Moreover, it is
trained end-to-end and utilizes a hyperparameter λ to trade-off
between the reconstruction and KL divergence losses in Eq. (1).
The reconstruction loss determines crucially the best achievable
reconstructed image quality, while the KL divergence loss is
strongly connected to the image restoration quality at inference
time. This approach avoids the challenges associated with
training a large codebook, as seen in VQ-VAE. This work
also explores an alternative CVAE architecture that utilizes
Restormer [10] as the backbone (Fig. 1(f)). Our contributions
are as follows:

• We make the first attempt to utilize a conditional video
compression model as an image restoration framework.

• We fully condition the encoder, decoder, and the prior
distribution on the low-quality image and train the entire
system end-to-end to maximize the conditional evidence
lower bound.

• We demonstrate that a good conditional video codec has
the potential to perform comparably to or better than
state-of-the-art restoration techniques in terms of both

quantitative and qualitative metrics.

II. PROPOSED METHOD

Our work leverages a conditional video compression model
to perform image restoration. Section II-A presents an overview
of our system. Section II-B delves into the estimation of
the prior and posterior distributions. Lastly, we introduce our
training methodology in Section II-C.

A. System Overview

Fig. 2 illustrates our CVAE architecture. It comprises a
conditional encoder EH , a prior encoder EL, and a conditional
decoder D. These three components are conditioned on the
features generated by the feature pyramid EF . Given a pair of
high- and low-quality images IH ∈ RH×W×3, IL ∈ RH×W×3,
the feature pyramid EF (Fig. 2(d)) generates the condition
signals c1 ∈ RH

4 ×W
4 ×N , c2 ∈ RH

2 ×W
2 ×N , c3 ∈ RH×W×N

from IL, where N represents the number of channels. The
conditional encoder EH (Fig. 2(a)) encodes the high-quality
image IH into the content latents y1 ∈ RH

16×
W
16×M and the

kernel latents y2 ∈ RH
4 ×W

4 ×N , based on IL, where N and M
represent the numbers of channels. The content latents are a
compact set of features capturing conditionally the information
about IH according to IL, while the kernel latents act as
a correction term to compensate for the predicting error of
y1 in the decoder D at inference time (Section II-B). In
addition, the prior encoder EL encodes IL (Fig. 2(b)) into
its latent representation ỹ1 ∈ RH

16×
W
16×M . During training,

the conditional decoder D (Fig. 2(c)) reconstructs the high-
quality image ÎH ∈ RH×W×3 by updating ỹ1 and F based on
the content y1 and kernel y2 latents, respectively. At inference
time, the high-quality image IH is not available. As such, ỹ1
and F are updated from samples drawn from their respective
priors, respectively. The decoder incorporates the content and
kernel latent blocks [18] (Figs. 2(e) and (f)) to minimize the
KL divergence between the posterior and prior distributions.
More details are provided in Section II-B.

To sum up, at training time, we start by encoding the input
image IH with the conditional encoder EH and sampling
features from the posterior distribution in the kernel and content
latent blocks of the decoder D to reconstruct the input image
ÎH . The quality of the reconstructed image ÎH depends heavily
on the distortion term in the evidence lower bound (i.e. Eq. (1)).
At inference time, we start from the prior encoder EL and
sampling features from the prior in the kernel and content latent
blocks to generate the restored image ĨH ∈ RH×W×3 from IL.
The restoration quality is controlled by the KL divergence in
Eq. (1).

B. Posterior and Prior Distributions

This section details how we model the prior and posterior
distributions in the content and kernel latent blocks. Mini-
mizing the KL divergence between these two distributions is
crucial to ensure high-quality restored images. In the content
latent block (Fig. 2(f)), the left branch corresponds to the



Fig. 2. Illustration of the proposed method. (a) The conditional encoder EH converts IH into its content latent representation y1 and kernel latent representation
y2 given the condition IL. (b) The prior encoder EL converts IL into ỹ1. (c) The conditional decoder D generates the reconstructed image ÎH at training
time. (d) The feature pyramid network EF extracts multi-scale features from IL as the condition signals. (e) The kernel latent block updates F based on y2.
(f) The content latent block updates ỹ1 based on y1.

posterior distribution, which is assumed to follow a uniform
distribution:

qϕ,1(z)
∆
= U

(
µ(y1, ỹ1)−

1

2
, µ(y1, ỹ1) +

1

2

)
, (2)

where µ(y1, ỹ1) denotes a function of y1 and ỹ1. Note that
the posterior qϕ,1 is derived from the combination of y1 and
ỹ1, rather than solely from y1. This design, inspired by Duan
et al. [18], makes the minimization of the KL divergence
relatively easy, as opposed to formulating qϕ,1 from y1 only.
The intuition is that it depends more directly on the only
variable ỹ1 from which the prior pθ,1 is constructed. The latent
variable z ∈ RH×W×N sampled from qϕ,1 is then utilized to
update ỹ1 in the content latent block.

The middle branch in Fig. 2(f) corresponds to the prior
distribution pθ,1, which is assumed to follow a Gaussian
distribution:

pθ,1
∆
= N

(
µ̃(ỹ1), σ̃(ỹ1)

2
)
, (3)

where µ̃(ỹ1) and σ̃(ỹ1) represent the mean and standard
deviation, respectively. Both outputs are functions of ỹ1.

During inference, the latent variable z is sampled from the
prior distribution to decode the restored image ĨH . If the prior
does not approximate the posterior well, the mismatch error in
the drawn sample z will propagate to the subsequent layers in
the decoder, resulting in poor restoration quality.

To mitigate this issue, a kernel latent variable y2 is intro-
duced in the shallow layer (which is closer to the decoder
output) in the decoder to rectify the mismatch error in z of
the content latent block. The design of the kernel latent block
is similar to that of the content latent block. One notable
difference is that we perform average pooling along the spatial
dimension to derive channel-wise scale ∈ RN and bias ∈ RN

to update the main feature F in the channel dimension. The
ablation study in Table VI confirms the benefit of introducing
the content and kernel latent blocks.

C. Training Objective

Our training objective is to learn a CVAE by maximizing
the evidence lower bound. That is, to minimize

L = λ · D(IH , ÎH) + KL (qϕ,1(y1, ỹ1))||pθ,1(ỹ1))
+KL (qϕ,2(y2, F )||pθ,2(F )) ,

(4)

where ÎH ∈ RH×W×3 indicates the reconstructed image. D
represents the mean squared error between the ground truth
IH and ÎH . KL terms represent the KL divergence between
the posteriors qϕ,i and the priors pθ,i in the content and
kernel latent blocks, where i = 1, 2. λ is a hyperparameter
to balance the two losses. Table V explains how λ affects the
performance.

III. EXPERIMENTAL RESULTS

A. Settings

We apply our model to two restoration tasks: image deblur-
ring and denoising. We evaluate the quality of the restored
images both quantitatively and qualitatively. We adopt PSNR
and SSIM to compare the image quality of our method against
non-generative models. We further utilize LPIPS, DISTS, and
FID to compare our method with the generative models.

B. Training Details

We implement our method using two CVAE backbones,
TCM-based and Restormer-based models. We train both mod-
els end-to-end. The TCM-based model is trained from scratch
with the Adam optimizer (betas=(0.9, 0.999)), with batch size



TABLE I
QUANTITATIVE RESULTS OF SINGLE-IMAGE MOTION DEBLURRING ON

GOPRO DATASET

Method PSNR↑ SSIM↑
IR-SDE [21] 30.7 0.901
MPRNet [5] 32.66 0.959
MIMO-UNet++ [22] 32.68 0.959
MAXIM-3S [23] 32.86 0.961
Restormer [10] 32.92 0.961
Ours (TCM-based) 33.13 0.979
Ours (Restormer-based) 32.90 0.960

TABLE II
QUANTITATIVE RESULTS OF SINGLE-IMAGE MOTION DEBLURRING ON

GOPRO DATASET

Method LPIPS↓ DISTS↓ FID↓
Restormer [10] 0.163 0.085 10.626
DiffIR [11] 0.157 0.083 9.654
Ours (TCM-based) 0.160 0.081 9.417
Ours (Restormer-based) 0.163 0.085 10.528

set to 4 and a learning rate of 1e-4. The value of the hyper-
parameter λ is set to 0.0002. For the Restormer-based model,
we start with the pre-trained weights from Restormer [10]. We
also take the Adam optimizer with betas=(0.9, 0.999), weight
decay set to 1e-4, a batch size of 2, and a learning rate of 5e-4.
λ is set to 0.0067.

C. Image Deblurring

For the image deblurring task, we use GoPro dataset [19],
which consists of high-resolution images corrupted by non-
uniform blind motion blur. Our model is trained using cropped
image patches of 256×256 spatial resolution from the training
set and evaluated on 1280×720 images in the test set. Table I
shows that our TCM-based model outperforms Restormer [10]
by 0.2 dB in PSNR and 0.008 in SSIM. From Table II,
our TCM-based model shows comparable LPIPS performance
to DiffIR [11], which is a diffusion-based generative model.
Additionally, it has a 0.237 gain in FID and a 0.002 gain
in DISTS. Fig. 3 demonstrates the subjective quality of our
restored images.

D. Image Denoising

For the image denoising task, we conduct experiments using
Smartphone Image Denoising Dataset (SIDD) [20], which
comprises approximately 30,000 high-resolution noisy images
captured under various scenes and lighting conditions. These
high-resolution images are cropped into 256×256 patches for
both training and testing. The results are presented in Tables III
and IV. Our method demonstrates superior performance to
the other baseline methods. The variant with the Restormer
backbone achieves a 0.16 dB gain compared to the original
Restormer. Fig. 4 visualizes our restored images.

E. Ablation Study

Our ablation study explores two aspects: (a) the performance
under different lambda values and (b) the benefits of using

TABLE III
QUANTITATIVE RESULTS OF SINGLE-IMAGE DEOISING ON SIDD DATASET

Method PSNR↑ SSIM↑
MPRNet [24] 39.71 0.958
MIRNet [7] 39.72 0.959
Uformer [25] 39.89 0.960
MAXIM-3S [23] 39.96 0.960
Restormer [10] 40.02 0.960
Ours (TCM-based) 39.52 0.961
Ours (Restormer-based) 40.18 0.967

TABLE IV
QUANTITATIVE RESULTS OF SINGLE-IMAGE DEOISING ON SIDD DATASET

Method LPIPS↓ DISTS↓ FID↓
MIRNet [7] 0.3076 0.1513 47.71
MPRNet [24] 0.3062 0.1507 49.55
HINet [6] 0.2974 0.1491 47.38
Restormer [10] 0.2957 0.1480 47.29
Ours (TCM-based) 0.3192 0.1471 52.79
Ours (Restormer-based) 0.2917 0.1472 46.07

the content and kernel latent blocks. All experiments utilize a
lightweight version of the TCM-based model.

Performance under different lambda values. Table V
demonstrates how the choice of λ impacts the quality of ÎH
and ĨH . A higher λ puts more emphasis on the distortion term
in Eq. (4). Consequently, y1 and y2 contain more informa-
tion about IH , improving the quality of ÎH . However, this
also makes it more challenging for the priors to accurately
approximate the posterior, thereby causing the quality of ĨH
to decrease at inference time. Conversely, the PSNR of ĨH is
improved when λ is decreased.

Benefits of using the content and kernel latent blocks. Ta-
ble VI demonstrates the performance of using the content and
kernel latent blocks. The first row represents the experiment
where only the content latent is present and the prior encoder
outputs directly the Gaussian parameters. In this case, the KL
divergence is evaluated by

KL
(
U(y1 −

1

2
, y1 +

1

2
) || N (µ̃(ỹ1), σ̃(ỹ1)

2)

)
(5)

The results in Table VI show that both the content and kernel
latent blocks [18] are able to improve the restoration quality.

IV. CONCLUSION

Recognizing the limitations of existing CVAE-based image
restoration methods, such as suboptimal conditional schemes
in CVAE and the inability of VQ-VAE to fully optimize
the codebook due to its two-stage training, we make the
first attempt to adopt a conditional video codec for image
restoration. Extensive experiments confirms that our approach
performs comparably to or even better than the state-of-the-
art restoration techniques in terms of both quantitative and
qualitative quality.



Fig. 3. Subjective quality comparison on the deblurring task. Our method is
able to better restore objects (e.g., cars in the scene) as compared to Restormer.

Fig. 4. Subjective quality comparison of our method and others on the
denoising task.
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